In the rapidly evolving landscape of today’s digital economy,Financial Technology(Fintech)emerges as a trans-formative force,propelled by the dynamic synergy between Artificial Intelligence(AI)and Algorithmic Trading...In the rapidly evolving landscape of today’s digital economy,Financial Technology(Fintech)emerges as a trans-formative force,propelled by the dynamic synergy between Artificial Intelligence(AI)and Algorithmic Trading.Our in-depth investigation delves into the intricacies of merging Multi-Agent Reinforcement Learning(MARL)and Explainable AI(XAI)within Fintech,aiming to refine Algorithmic Trading strategies.Through meticulous examination,we uncover the nuanced interactions of AI-driven agents as they collaborate and compete within the financial realm,employing sophisticated deep learning techniques to enhance the clarity and adaptability of trading decisions.These AI-infused Fintech platforms harness collective intelligence to unearth trends,mitigate risks,and provide tailored financial guidance,fostering benefits for individuals and enterprises navigating the digital landscape.Our research holds the potential to revolutionize finance,opening doors to fresh avenues for investment and asset management in the digital age.Additionally,our statistical evaluation yields encouraging results,with metrics such as Accuracy=0.85,Precision=0.88,and F1 Score=0.86,reaffirming the efficacy of our approach within Fintech and emphasizing its reliability and innovative prowess.展开更多
Neuromuscular diseases present profound challenges to individuals and healthcare systems worldwide, profoundly impacting motor functions. This research provides a comprehensive exploration of how artificial intelligen...Neuromuscular diseases present profound challenges to individuals and healthcare systems worldwide, profoundly impacting motor functions. This research provides a comprehensive exploration of how artificial intelligence (AI) technology is revolutionizing rehabilitation for individuals with neuromuscular disorders. Through an extensive review, this paper elucidates a wide array of AI-driven interventions spanning robotic-assisted therapy, virtual reality rehabilitation, and intricately tailored machine learning algorithms. The aim is to delve into the nuanced applications of AI, unlocking its transformative potential in optimizing personalized treatment plans for those grappling with the complexities of neuromuscular diseases. By examining the multifaceted intersection of AI and rehabilitation, this paper not only contributes to our understanding of cutting-edge advancements but also envisions a future where technological innovations play a pivotal role in alleviating the challenges posed by neuromuscular diseases. From employing neural-fuzzy adaptive controllers for precise trajectory tracking amidst uncertainties to utilizing machine learning algorithms for recognizing patient motor intentions and adapting training accordingly, this research encompasses a holistic approach towards harnessing AI for enhanced rehabilitation outcomes. By embracing the synergy between AI and rehabilitation, we pave the way for a future where individuals with neuromuscular disorders can access tailored, effective, and technologically-driven interventions to improve their quality of life and functional independence.展开更多
Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual conne...Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual connections of large-scale fractures.Notably,this model efficiently manages over 20,000 fractures without necessitating adjustments to the DFN geometry.All geometric analyses,such as identifying connected fractures,dividing the two-dimensional domain into closed loops,triangulating arbitrary loops,and refining triangular elements,are fully automated.The analysis processes are comprehensively introduced,and core algorithms,along with their pseudo-codes,are outlined and explained to assist readers in their programming endeavors.The accuracy of geometric analyses is validated through topological graphs representing the connection relationships between fractures.In practical application,the proposed model is employed to assess the water-sealing effectiveness of an underground storage cavern project.The analysis results indicate that the existing design scheme can effectively prevent the stored oil from leaking in the presence of both dense and sparse fractures.Furthermore,following extensive modification and optimization,the scale and precision of model computation suggest that the proposed model and developed codes can meet the requirements of engineering applications.展开更多
A healthy balanced diet and a healthy lifestyle are very closely linked.Whichever the biological link is,it is overwhelming to understand.Modifications in how food is served,divided up,and supervised,such as the intro...A healthy balanced diet and a healthy lifestyle are very closely linked.Whichever the biological link is,it is overwhelming to understand.Modifications in how food is served,divided up,and supervised,such as the introduction of nutritional hygiene standards,food handling practices,and the entry of macro and micronutrients,have had a big impact on human health in the last few decades.Growing evidence indicates that our gut microbiota may affect our health in ways that are at least in part influenced by our diet and the ingredients used in the preparation of our food and drinks,as well as other factors.As a new problem,this one is getting a lot of attention,but it would be hard to figure out how the gut microbiota and nutrition molecules work together and how they work in certain situations.Genetic analysis,metagenomic characterization,configuration analysis of foodstuffs,and the shift to digital health information have provided massive amounts of data that might be useful in tackling this problem.Machine learning and deep learning methods will be employed extensively as part of this research in order to blend complicated data frames and extract crucial information that will be capable of exposing and grasping the incredibly delicate links that prevail between diet,gut microbiome,and overall wellbeing.Nutrition,well-being,and gut microorganisms are a few subjects covered in this field.It takes into account not only databases and high-speed technology,but also virtual machine problem-solving skills,intangible assets,and laws.This is how it works:Computer vision,data mining,and analytics are all discussed extensively in this study piece.We also point out limitations in existing methodologies and new situations that discovered in the context of current scientific knowledge in the decades to come.We also provide background on"bioinformatics"algorithms;recent developments may seem to herald a revolution in clinical research,pushing traditional techniques to the sidelines.Furthermore,their true potential rests in their ability to work in conjunction with,rather than as a substitute for,traditional research hypotheses and procedures.When new metadata propositions are made by focusing on easily understandable frameworks,they will always need to be rigorously validated and brought into question.Because of the huge datasets available,assumption analysis may be used to complement rather than a substitute for more conventional concept-driven scientific investigation.It is only by employing all of us that we will all increase the quality of evidence-based practice.展开更多
This paper describes an innovative adaptive algorithmic modeling approach, for solving a wide class of e-business and strategic management problems under uncertainty conditions. The proposed methodology is based on ba...This paper describes an innovative adaptive algorithmic modeling approach, for solving a wide class of e-business and strategic management problems under uncertainty conditions. The proposed methodology is based on basic ideas and concepts of four key-field interrelated sciences, i.e., computing science, applied mathematics, management sciences and economic sciences. Furthermore, the fundamental scientific concepts of adaptability and uncertainty are shown to play a critical role of major importance for a (near) optimum solution of a class of complex e-business/services and strategic management problems. Two characteristic case studies, namely measuring e-business performance under certain environmental pressures and organizational constraints and describing the relationships between technology, innovation and firm performance, are considered as effective applications of the proposed adaptive algorithmic modeling approach. A theoretical time-dependent model for the evaluation of firm e-business performances is also proposed.展开更多
Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinea...Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinear processes using Hammerstein model that consists of a static nonlinear polynomial function followed in series by a linear impulse response dynamic element. A new nonlinear Hammerstein MAC algorithm (named NLH-MAC) is presented in detail. The simulation control results of a pH neutralization process show that NLH-MAC gives better control performance than linear MAC and the commonly used industrial nonlinear propotional plus integral plus derivative (PID) controller. Further simulation experiment demonstrates that NLH-MAC not only gives good control response, but also possesses good stability and robustness even with large modeling errors.展开更多
Binary Decision Diagrams (BDDs) can be graphically manipulated to reduce the number of nodes and hence the area. In this context, ordering of BDDs play a major role. Most of the algorithms for input variable ordering ...Binary Decision Diagrams (BDDs) can be graphically manipulated to reduce the number of nodes and hence the area. In this context, ordering of BDDs play a major role. Most of the algorithms for input variable ordering of OBDD focus primarily on area minimization. However, suitable input variable ordering helps in minimizing the power consumption also. In this particular work, we have proposed two algorithms namely, a genetic algorithm based technique and a branch and bound algorithm to find an optimal input variable order. Of course, the node reordering is taken care of by the standard BDD package buddy-2.4. Moreover, we have evaluated the performances of the proposed algorithms by running an exhaustive search program. Experi-mental results show a substantial saving in area and power. We have also compared our techniques with other state-of-art techniques of variable ordering for OBDDs and found to give superior results.展开更多
Background: Popliteal cysts are common and present as asymptomatic lumps in the medial popliteal fossa. Some have complex internal characteristics such as septa and loose-bodies. However, not all are popliteal cysts a...Background: Popliteal cysts are common and present as asymptomatic lumps in the medial popliteal fossa. Some have complex internal characteristics such as septa and loose-bodies. However, not all are popliteal cysts and can be aggressive. These lesions need to be differentiated by the absence of the communicating neck with the joint on ultrasound. Presence of Doppler flow of non-communicating cysts requires further evaluation on MRI, prior to performing a biopsy. Using a case series, we propose an algorithmic approach that is simple and will help identify the malignant lesions and institute appropriate management. Case-Presentation: Popliteal Cyst: On ultrasound: characteristic neck communicating with knee joint. Synovial Sarcoma: Gadolinium enhancement, with areas of low-, iso- and hyper-intense signal to fat on T2. Synovial-Osteochondromatosis: Non-mineralized: T1-low/intermediate intensity;T2-high intensity. Mineralized type: low intensity on T1 & T2. Thrombosed Popliteal Aneurysm: Lamellated appearance-high/low signal intensity on T2. Myxoid-Liposarcomas: Inhomogeneous appearance;homogenous with gadolinium. Usually require a biopsy for diagnosis. Conclusion: The cystic lesions in the medial aspect of the popliteal fossa can be misdiagnosed. Our article reiterates the importance of the communicating neck that separates popliteal cysts from other mimics. We have proposed an algorithm to identify these mimics.展开更多
The paper is focused on available server management in Internet connected network environments. The local backup servers are hooked up by LAN and replace broken main server immediately and several different types of b...The paper is focused on available server management in Internet connected network environments. The local backup servers are hooked up by LAN and replace broken main server immediately and several different types of backup servers are also considered. The remote backup servers are hooked up by VPN (Virtual Private Network) with high-speed optical network. A Virtual Private Network (VPN) is a way to use a public network infrastructure and hooks up long-distance servers within a single network infrastructure. The remote backup servers also replace broken main severs immediately under the different conditions with local backups. When the system performs a mandatory routine maintenance of main and local backup servers, auxiliary servers from other location are being used for backups during idle periods. Analytically tractable results are obtained by using several mathematical techniques and the results are demonstrated in the framework of optimized networked server allocation problems. The operational workflow give the guidelines for the actual implementations.展开更多
This article describes the development of an application for generating tonal melodies. The goal of the project is to ascertain our current understanding of tonal music by means of algorithmic music generation. The me...This article describes the development of an application for generating tonal melodies. The goal of the project is to ascertain our current understanding of tonal music by means of algorithmic music generation. The method followed consists of four stages: 1) selection of music-theoretical insights, 2) translation of these insights into a set of principles, 3) conversion of the principles into a computational model having the form of an algorithm for music generation, 4) testing the “music” generated by the algorithm to evaluate the adequacy of the model. As an example, the method is implemented in Melody Generator, an algorithm for generating tonal melodies. The program has a structure suited for generating, displaying, playing and storing melodies, functions which are all accessible via a dedicated interface. The actual generation of melodies, is based in part on constraints imposed by the tonal context, i.e. by meter and key, the settings of which are controlled by means of parameters on the interface. For another part, it is based upon a set of construction principles including the notion of a hierarchical organization, and the idea that melodies consist of a skeleton that may be elaborated in various ways. After these aspects were implemented as specific sub-algorithms, the device produces simple but well-structured tonal melodies.展开更多
The algorithmic tangent modulus at finite strains in current configuration plays an important role in the nonlinear finite element method. In this work, the exact tensorial forms of the algorithmic tangent modulus at ...The algorithmic tangent modulus at finite strains in current configuration plays an important role in the nonlinear finite element method. In this work, the exact tensorial forms of the algorithmic tangent modulus at finite strains are derived in the principal space and their corresponding matrix expressions are also presented. The algorithmic tangent modulus consists of two terms. The first term depends on a specific yield surface, while the second term is independent of the specific yield surface. The elastoplastic matrix in the principal space associated with the specific yield surface is derived by the logarithmic strains in terms of the local multiplicative decomposition. The Drucker-Prager yield function of elastoplastic material is used as a numerical example to verify the present algorithmic tangent modulus at finite strains.展开更多
In this paper, we use the cellular automation model to imitate earthquake process and draw some conclusionsof general applicability. First, it is confirmed that earthquake process has some ordering characters, and it ...In this paper, we use the cellular automation model to imitate earthquake process and draw some conclusionsof general applicability. First, it is confirmed that earthquake process has some ordering characters, and it isshown that both the existence and their mutual arrangement of faults could obviously influence the overallcharacters of earthquake process. Then the characters of each stage of model evolution are explained withself-organized critical state theory. Finally, earthquake sequences produced by the models are analysed interms pf algorithmic complexity and the result shows that AC-values of algorithmic complexity could be usedto study earthquake process and evolution.展开更多
We describe here a comprehensive framework for intelligent information management (IIM) of data collection and decision-making actions for reliable and robust event processing and recognition. This is driven by algori...We describe here a comprehensive framework for intelligent information management (IIM) of data collection and decision-making actions for reliable and robust event processing and recognition. This is driven by algorithmic information theory (AIT), in general, and algorithmic randomness and Kolmogorov complexity (KC), in particular. The processing and recognition tasks addressed include data discrimination and multilayer open set data categorization, change detection, data aggregation, clustering and data segmentation, data selection and link analysis, data cleaning and data revision, and prediction and identification of critical states. The unifying theme throughout the paper is that of “compression entails comprehension”, which is realized using the interrelated concepts of randomness vs. regularity and Kolmogorov complexity. The constructive and all encompassing active learning (AL) methodology, which mediates and supports the above theme, is context-driven and takes advantage of statistical learning, in general, and semi-supervised learning and transduction, in particular. Active learning employs explore and exploit actions characteristic of closed-loop control for evidence accumulation in order to revise its prediction models and to reduce uncertainty. The set-based similarity scores, driven by algorithmic randomness and Kolmogorov complexity, employ strangeness / typicality and p-values. We propose the application of the IIM framework to critical states prediction for complex physical systems;in particular, the prediction of cyclone genesis and intensification.展开更多
A class of general inverse matrix techniques based on adaptive algorithmic modelling methodologies is derived yielding iterative methods for solving unsymmetric linear systems of irregular structure arising in complex...A class of general inverse matrix techniques based on adaptive algorithmic modelling methodologies is derived yielding iterative methods for solving unsymmetric linear systems of irregular structure arising in complex computational problems in three space dimensions. The proposed class of approximate inverse is chosen as the basis to yield systems on which classic and preconditioned iterative methods are explicitly applied. Optimized versions of the proposed approximate inverse are presented using special storage (k-sweep) techniques leading to economical forms of the approximate inverses. Application of the adaptive algorithmic methodologies on a characteristic nonlinear boundary value problem is discussed and numerical results are given.展开更多
Pascal triangles are formulated for computing the coefficients of the B-spline series representation of the compactly supported spline-wavelets with minimum support and their derivatives.It is shown that with the al- ...Pascal triangles are formulated for computing the coefficients of the B-spline series representation of the compactly supported spline-wavelets with minimum support and their derivatives.It is shown that with the al- ternating signs removed,all these sequences are totally positive.On the other hand,truncations of the recipro- cal Euler-Frobenius polynomials lead to finite sequences for orthogonal wavelet decompositions.For this pur- pose,sharp estimates are given in terms of the exact reconstruction of these approximate decomposed compo- nents.展开更多
In recent years, most developed societies have realized that it is very important for students to acquire the skill of algorithmic thinking and the basic knowledge of computer programming. Nowadays we have numerous wa...In recent years, most developed societies have realized that it is very important for students to acquire the skill of algorithmic thinking and the basic knowledge of computer programming. Nowadays we have numerous ways that allow us to teach programming with appropriate first steps. The paper will present one of the possibilities which we have to introduce basic programming concepts to younger children--with Lego robots and a topic, who lives in a meadow?展开更多
CARE—Cloud Archive Repository Express has emerged from algorithmic machine learning, and acts like a “fastlane” to bridge between DATA and wiseCIO where DATA stands for digital archiving & trans-analyt...CARE—Cloud Archive Repository Express has emerged from algorithmic machine learning, and acts like a “fastlane” to bridge between DATA and wiseCIO where DATA stands for digital archiving & trans-analytics, and wiseCIO for web-based intelligent service. CARE incorporates DATA and wiseCIO into a triad for content management and delivery (CMD) to orchestrate Anything as a Service (XaaS) by using mathematical and computational solutions to cloud-based problems. This article presents algorithmic machine learning in CARE for “DNA-like” ingredients with trivial information eliminated through deep learning to support integral content management over DATA and informative delivery on wiseCIO. In particular with algorithmic machine learning, CARE creatively incorporates express tokens for information interchange (eTokin) to promote seamless intercommunications among the CMD triad that enables Anything as a Service and empowers ordinary users to be UNIQ professionals: such as ubiquitous manager on content management and delivery, novel designer on universal interface and user-centric experience, intelligent expert for business intelligence, and quinary liaison with XaaS without explicitly coding required. Furthermore, CMD triad harnesses rapid prototyping for user interface design and propels cohesive assembly from Anything orchestrated as a Service. More importantly, CARE collaboratively as a whole promotes instant publishing over DATA, efficient presentation to end-users via wiseCIO, and diligent intelligence for business, education, and entertainment (iBEE) through highly robotic process automation.展开更多
This paper uses the concept of algorithmic efficiency to present a unified theory of intelligence. Intelligence is defined informally, formally, and computationally. We introduce the concept of dimensional complexity ...This paper uses the concept of algorithmic efficiency to present a unified theory of intelligence. Intelligence is defined informally, formally, and computationally. We introduce the concept of dimensional complexity in algorithmic efficiency and deduce that an optimally efficient algorithm has zero time complexity, zero space complexity, and an infinite dimensional complexity. This algorithm is used to generate the number line.展开更多
The paper presents a formal and practical approach to dependable algorithm development.First,starting from a formal specification based on the Eindhoven quantifier notation,a problem is regularly reduced to subproblem...The paper presents a formal and practical approach to dependable algorithm development.First,starting from a formal specification based on the Eindhoven quantifier notation,a problem is regularly reduced to subproblems with less complexity by using a concise set of calculation rules,the result of which establishes a recurrence-based algorithm.Second,a loop invariant is derived from the problem specification and recurrence,which certifies the transformation from the recurrence-based algorithm to one or more iterative programs.We demonstrate that our approach covers a number of classical algorithm design tactics,develops algorithmic programs together with their proof of correctness,and thus contributes fundamentally to the dependability of computer software.展开更多
基金This project was funded by Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah underGrant No.(IFPIP-1127-611-1443)the authors,therefore,acknowledge with thanks DSR technical and financial support.
文摘In the rapidly evolving landscape of today’s digital economy,Financial Technology(Fintech)emerges as a trans-formative force,propelled by the dynamic synergy between Artificial Intelligence(AI)and Algorithmic Trading.Our in-depth investigation delves into the intricacies of merging Multi-Agent Reinforcement Learning(MARL)and Explainable AI(XAI)within Fintech,aiming to refine Algorithmic Trading strategies.Through meticulous examination,we uncover the nuanced interactions of AI-driven agents as they collaborate and compete within the financial realm,employing sophisticated deep learning techniques to enhance the clarity and adaptability of trading decisions.These AI-infused Fintech platforms harness collective intelligence to unearth trends,mitigate risks,and provide tailored financial guidance,fostering benefits for individuals and enterprises navigating the digital landscape.Our research holds the potential to revolutionize finance,opening doors to fresh avenues for investment and asset management in the digital age.Additionally,our statistical evaluation yields encouraging results,with metrics such as Accuracy=0.85,Precision=0.88,and F1 Score=0.86,reaffirming the efficacy of our approach within Fintech and emphasizing its reliability and innovative prowess.
文摘Neuromuscular diseases present profound challenges to individuals and healthcare systems worldwide, profoundly impacting motor functions. This research provides a comprehensive exploration of how artificial intelligence (AI) technology is revolutionizing rehabilitation for individuals with neuromuscular disorders. Through an extensive review, this paper elucidates a wide array of AI-driven interventions spanning robotic-assisted therapy, virtual reality rehabilitation, and intricately tailored machine learning algorithms. The aim is to delve into the nuanced applications of AI, unlocking its transformative potential in optimizing personalized treatment plans for those grappling with the complexities of neuromuscular diseases. By examining the multifaceted intersection of AI and rehabilitation, this paper not only contributes to our understanding of cutting-edge advancements but also envisions a future where technological innovations play a pivotal role in alleviating the challenges posed by neuromuscular diseases. From employing neural-fuzzy adaptive controllers for precise trajectory tracking amidst uncertainties to utilizing machine learning algorithms for recognizing patient motor intentions and adapting training accordingly, this research encompasses a holistic approach towards harnessing AI for enhanced rehabilitation outcomes. By embracing the synergy between AI and rehabilitation, we pave the way for a future where individuals with neuromuscular disorders can access tailored, effective, and technologically-driven interventions to improve their quality of life and functional independence.
基金sponsored by the General Program of the National Natural Science Foundation of China(Grant Nos.52079129 and 52209148)the Hubei Provincial General Fund,China(Grant No.2023AFB567)。
文摘Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual connections of large-scale fractures.Notably,this model efficiently manages over 20,000 fractures without necessitating adjustments to the DFN geometry.All geometric analyses,such as identifying connected fractures,dividing the two-dimensional domain into closed loops,triangulating arbitrary loops,and refining triangular elements,are fully automated.The analysis processes are comprehensively introduced,and core algorithms,along with their pseudo-codes,are outlined and explained to assist readers in their programming endeavors.The accuracy of geometric analyses is validated through topological graphs representing the connection relationships between fractures.In practical application,the proposed model is employed to assess the water-sealing effectiveness of an underground storage cavern project.The analysis results indicate that the existing design scheme can effectively prevent the stored oil from leaking in the presence of both dense and sparse fractures.Furthermore,following extensive modification and optimization,the scale and precision of model computation suggest that the proposed model and developed codes can meet the requirements of engineering applications.
文摘A healthy balanced diet and a healthy lifestyle are very closely linked.Whichever the biological link is,it is overwhelming to understand.Modifications in how food is served,divided up,and supervised,such as the introduction of nutritional hygiene standards,food handling practices,and the entry of macro and micronutrients,have had a big impact on human health in the last few decades.Growing evidence indicates that our gut microbiota may affect our health in ways that are at least in part influenced by our diet and the ingredients used in the preparation of our food and drinks,as well as other factors.As a new problem,this one is getting a lot of attention,but it would be hard to figure out how the gut microbiota and nutrition molecules work together and how they work in certain situations.Genetic analysis,metagenomic characterization,configuration analysis of foodstuffs,and the shift to digital health information have provided massive amounts of data that might be useful in tackling this problem.Machine learning and deep learning methods will be employed extensively as part of this research in order to blend complicated data frames and extract crucial information that will be capable of exposing and grasping the incredibly delicate links that prevail between diet,gut microbiome,and overall wellbeing.Nutrition,well-being,and gut microorganisms are a few subjects covered in this field.It takes into account not only databases and high-speed technology,but also virtual machine problem-solving skills,intangible assets,and laws.This is how it works:Computer vision,data mining,and analytics are all discussed extensively in this study piece.We also point out limitations in existing methodologies and new situations that discovered in the context of current scientific knowledge in the decades to come.We also provide background on"bioinformatics"algorithms;recent developments may seem to herald a revolution in clinical research,pushing traditional techniques to the sidelines.Furthermore,their true potential rests in their ability to work in conjunction with,rather than as a substitute for,traditional research hypotheses and procedures.When new metadata propositions are made by focusing on easily understandable frameworks,they will always need to be rigorously validated and brought into question.Because of the huge datasets available,assumption analysis may be used to complement rather than a substitute for more conventional concept-driven scientific investigation.It is only by employing all of us that we will all increase the quality of evidence-based practice.
文摘This paper describes an innovative adaptive algorithmic modeling approach, for solving a wide class of e-business and strategic management problems under uncertainty conditions. The proposed methodology is based on basic ideas and concepts of four key-field interrelated sciences, i.e., computing science, applied mathematics, management sciences and economic sciences. Furthermore, the fundamental scientific concepts of adaptability and uncertainty are shown to play a critical role of major importance for a (near) optimum solution of a class of complex e-business/services and strategic management problems. Two characteristic case studies, namely measuring e-business performance under certain environmental pressures and organizational constraints and describing the relationships between technology, innovation and firm performance, are considered as effective applications of the proposed adaptive algorithmic modeling approach. A theoretical time-dependent model for the evaluation of firm e-business performances is also proposed.
文摘Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinear processes using Hammerstein model that consists of a static nonlinear polynomial function followed in series by a linear impulse response dynamic element. A new nonlinear Hammerstein MAC algorithm (named NLH-MAC) is presented in detail. The simulation control results of a pH neutralization process show that NLH-MAC gives better control performance than linear MAC and the commonly used industrial nonlinear propotional plus integral plus derivative (PID) controller. Further simulation experiment demonstrates that NLH-MAC not only gives good control response, but also possesses good stability and robustness even with large modeling errors.
文摘Binary Decision Diagrams (BDDs) can be graphically manipulated to reduce the number of nodes and hence the area. In this context, ordering of BDDs play a major role. Most of the algorithms for input variable ordering of OBDD focus primarily on area minimization. However, suitable input variable ordering helps in minimizing the power consumption also. In this particular work, we have proposed two algorithms namely, a genetic algorithm based technique and a branch and bound algorithm to find an optimal input variable order. Of course, the node reordering is taken care of by the standard BDD package buddy-2.4. Moreover, we have evaluated the performances of the proposed algorithms by running an exhaustive search program. Experi-mental results show a substantial saving in area and power. We have also compared our techniques with other state-of-art techniques of variable ordering for OBDDs and found to give superior results.
文摘Background: Popliteal cysts are common and present as asymptomatic lumps in the medial popliteal fossa. Some have complex internal characteristics such as septa and loose-bodies. However, not all are popliteal cysts and can be aggressive. These lesions need to be differentiated by the absence of the communicating neck with the joint on ultrasound. Presence of Doppler flow of non-communicating cysts requires further evaluation on MRI, prior to performing a biopsy. Using a case series, we propose an algorithmic approach that is simple and will help identify the malignant lesions and institute appropriate management. Case-Presentation: Popliteal Cyst: On ultrasound: characteristic neck communicating with knee joint. Synovial Sarcoma: Gadolinium enhancement, with areas of low-, iso- and hyper-intense signal to fat on T2. Synovial-Osteochondromatosis: Non-mineralized: T1-low/intermediate intensity;T2-high intensity. Mineralized type: low intensity on T1 & T2. Thrombosed Popliteal Aneurysm: Lamellated appearance-high/low signal intensity on T2. Myxoid-Liposarcomas: Inhomogeneous appearance;homogenous with gadolinium. Usually require a biopsy for diagnosis. Conclusion: The cystic lesions in the medial aspect of the popliteal fossa can be misdiagnosed. Our article reiterates the importance of the communicating neck that separates popliteal cysts from other mimics. We have proposed an algorithm to identify these mimics.
文摘The paper is focused on available server management in Internet connected network environments. The local backup servers are hooked up by LAN and replace broken main server immediately and several different types of backup servers are also considered. The remote backup servers are hooked up by VPN (Virtual Private Network) with high-speed optical network. A Virtual Private Network (VPN) is a way to use a public network infrastructure and hooks up long-distance servers within a single network infrastructure. The remote backup servers also replace broken main severs immediately under the different conditions with local backups. When the system performs a mandatory routine maintenance of main and local backup servers, auxiliary servers from other location are being used for backups during idle periods. Analytically tractable results are obtained by using several mathematical techniques and the results are demonstrated in the framework of optimized networked server allocation problems. The operational workflow give the guidelines for the actual implementations.
文摘This article describes the development of an application for generating tonal melodies. The goal of the project is to ascertain our current understanding of tonal music by means of algorithmic music generation. The method followed consists of four stages: 1) selection of music-theoretical insights, 2) translation of these insights into a set of principles, 3) conversion of the principles into a computational model having the form of an algorithm for music generation, 4) testing the “music” generated by the algorithm to evaluate the adequacy of the model. As an example, the method is implemented in Melody Generator, an algorithm for generating tonal melodies. The program has a structure suited for generating, displaying, playing and storing melodies, functions which are all accessible via a dedicated interface. The actual generation of melodies, is based in part on constraints imposed by the tonal context, i.e. by meter and key, the settings of which are controlled by means of parameters on the interface. For another part, it is based upon a set of construction principles including the notion of a hierarchical organization, and the idea that melodies consist of a skeleton that may be elaborated in various ways. After these aspects were implemented as specific sub-algorithms, the device produces simple but well-structured tonal melodies.
基金Project supported by the National Natural Science Foundation of China(Nos.41172116,U1261212,and 51134005)
文摘The algorithmic tangent modulus at finite strains in current configuration plays an important role in the nonlinear finite element method. In this work, the exact tensorial forms of the algorithmic tangent modulus at finite strains are derived in the principal space and their corresponding matrix expressions are also presented. The algorithmic tangent modulus consists of two terms. The first term depends on a specific yield surface, while the second term is independent of the specific yield surface. The elastoplastic matrix in the principal space associated with the specific yield surface is derived by the logarithmic strains in terms of the local multiplicative decomposition. The Drucker-Prager yield function of elastoplastic material is used as a numerical example to verify the present algorithmic tangent modulus at finite strains.
文摘In this paper, we use the cellular automation model to imitate earthquake process and draw some conclusionsof general applicability. First, it is confirmed that earthquake process has some ordering characters, and it isshown that both the existence and their mutual arrangement of faults could obviously influence the overallcharacters of earthquake process. Then the characters of each stage of model evolution are explained withself-organized critical state theory. Finally, earthquake sequences produced by the models are analysed interms pf algorithmic complexity and the result shows that AC-values of algorithmic complexity could be usedto study earthquake process and evolution.
文摘We describe here a comprehensive framework for intelligent information management (IIM) of data collection and decision-making actions for reliable and robust event processing and recognition. This is driven by algorithmic information theory (AIT), in general, and algorithmic randomness and Kolmogorov complexity (KC), in particular. The processing and recognition tasks addressed include data discrimination and multilayer open set data categorization, change detection, data aggregation, clustering and data segmentation, data selection and link analysis, data cleaning and data revision, and prediction and identification of critical states. The unifying theme throughout the paper is that of “compression entails comprehension”, which is realized using the interrelated concepts of randomness vs. regularity and Kolmogorov complexity. The constructive and all encompassing active learning (AL) methodology, which mediates and supports the above theme, is context-driven and takes advantage of statistical learning, in general, and semi-supervised learning and transduction, in particular. Active learning employs explore and exploit actions characteristic of closed-loop control for evidence accumulation in order to revise its prediction models and to reduce uncertainty. The set-based similarity scores, driven by algorithmic randomness and Kolmogorov complexity, employ strangeness / typicality and p-values. We propose the application of the IIM framework to critical states prediction for complex physical systems;in particular, the prediction of cyclone genesis and intensification.
文摘A class of general inverse matrix techniques based on adaptive algorithmic modelling methodologies is derived yielding iterative methods for solving unsymmetric linear systems of irregular structure arising in complex computational problems in three space dimensions. The proposed class of approximate inverse is chosen as the basis to yield systems on which classic and preconditioned iterative methods are explicitly applied. Optimized versions of the proposed approximate inverse are presented using special storage (k-sweep) techniques leading to economical forms of the approximate inverses. Application of the adaptive algorithmic methodologies on a characteristic nonlinear boundary value problem is discussed and numerical results are given.
基金Research supported by NSF Grant DMS 89-0-01345 and ARO Contract No.DAAL 03-90-G-0091.
文摘Pascal triangles are formulated for computing the coefficients of the B-spline series representation of the compactly supported spline-wavelets with minimum support and their derivatives.It is shown that with the al- ternating signs removed,all these sequences are totally positive.On the other hand,truncations of the recipro- cal Euler-Frobenius polynomials lead to finite sequences for orthogonal wavelet decompositions.For this pur- pose,sharp estimates are given in terms of the exact reconstruction of these approximate decomposed compo- nents.
文摘In recent years, most developed societies have realized that it is very important for students to acquire the skill of algorithmic thinking and the basic knowledge of computer programming. Nowadays we have numerous ways that allow us to teach programming with appropriate first steps. The paper will present one of the possibilities which we have to introduce basic programming concepts to younger children--with Lego robots and a topic, who lives in a meadow?
文摘CARE—Cloud Archive Repository Express has emerged from algorithmic machine learning, and acts like a “fastlane” to bridge between DATA and wiseCIO where DATA stands for digital archiving & trans-analytics, and wiseCIO for web-based intelligent service. CARE incorporates DATA and wiseCIO into a triad for content management and delivery (CMD) to orchestrate Anything as a Service (XaaS) by using mathematical and computational solutions to cloud-based problems. This article presents algorithmic machine learning in CARE for “DNA-like” ingredients with trivial information eliminated through deep learning to support integral content management over DATA and informative delivery on wiseCIO. In particular with algorithmic machine learning, CARE creatively incorporates express tokens for information interchange (eTokin) to promote seamless intercommunications among the CMD triad that enables Anything as a Service and empowers ordinary users to be UNIQ professionals: such as ubiquitous manager on content management and delivery, novel designer on universal interface and user-centric experience, intelligent expert for business intelligence, and quinary liaison with XaaS without explicitly coding required. Furthermore, CMD triad harnesses rapid prototyping for user interface design and propels cohesive assembly from Anything orchestrated as a Service. More importantly, CARE collaboratively as a whole promotes instant publishing over DATA, efficient presentation to end-users via wiseCIO, and diligent intelligence for business, education, and entertainment (iBEE) through highly robotic process automation.
文摘This paper uses the concept of algorithmic efficiency to present a unified theory of intelligence. Intelligence is defined informally, formally, and computationally. We introduce the concept of dimensional complexity in algorithmic efficiency and deduce that an optimally efficient algorithm has zero time complexity, zero space complexity, and an infinite dimensional complexity. This algorithm is used to generate the number line.
基金National Natural Science Foundation of China under Grant No. 60773054,60870002 and 61020106009Zhejiang Provincial Natural Science Foundation of China under Grant No. R1110679
文摘The paper presents a formal and practical approach to dependable algorithm development.First,starting from a formal specification based on the Eindhoven quantifier notation,a problem is regularly reduced to subproblems with less complexity by using a concise set of calculation rules,the result of which establishes a recurrence-based algorithm.Second,a loop invariant is derived from the problem specification and recurrence,which certifies the transformation from the recurrence-based algorithm to one or more iterative programs.We demonstrate that our approach covers a number of classical algorithm design tactics,develops algorithmic programs together with their proof of correctness,and thus contributes fundamentally to the dependability of computer software.