Alternate partial root-zone drip fertigation (ADF) is a combination of alternating irrigation and drip fertigation,with the potential to save water and increase nitrogen (N) fertilizer efficiency.A 2-year greenhouse e...Alternate partial root-zone drip fertigation (ADF) is a combination of alternating irrigation and drip fertigation,with the potential to save water and increase nitrogen (N) fertilizer efficiency.A 2-year greenhouse experiment was conducted to evaluate the effect of different fertigation frequencies on the distribution of soil moisture and nutrients and tomato yield under ADF.The treatments included three ADF frequencies with intervals of 3 days (F3),6 days (F6) and 12 days (F12),and conventional drip fertigation as a control (CK),which was fertilized once every 6 days.For the ADF treatments,two drip tapes were placed 10 cm away on each side of the tomato row,and alternate drip irrigation was realized using a manual valve on the distribution tapes.For the CK treatment,a drip tape was located close to the roots of the tomato plants.The total N application rate of all treatments was 180 kg ha^(-1).The total irrigation amounts applied to the CK treatment were450.6 and 446.1 mm in 2019 and 2020,respectively;and the irrigation amounts applied to the ADF treatments were 60%of those of the CK treatment.The F3 treatment resulted in water and N being distributed mainly in the 0–40-cm soil layer with less water and N being distributed in the 40–60-cm soil layer.The F6 treatment led to 21.0 and 29.0%higher 2-year average concentration of mineral N in the 0–20 and 20–40-cm soil layer,respectively and a 23.0%lower N concentration in the 40–60-cm soil layer than in the CK treatment.The 2-year average tomato yields of the F3,F6,F12,and CK treatments were 107.5,102.6,87.2,and 98.7 t ha^(-1),respectively.The tomato yield of F3 was significantly higher (23.3%) than that in the F12 treatment,whereas there was no significant difference between the F3 and F6 treatment.The F6 treatment resulted in yield similar to the CK treatment,indicating that ADF could maintain tomato yield with a 40%saving in water use.Based on the distribution of water and N,and tomato yield,a fertigation frequency of 6 days under ADF should be considered as a water-saving strategy for greenhouse tomato production.展开更多
Traditional water and fertilizer inputs are often much higher than the actual demands of tomato,which causes a reduction in water-and fertilizer-use efficiencies.To investigate the advantage of alternate partial root-...Traditional water and fertilizer inputs are often much higher than the actual demands of tomato,which causes a reduction in water-and fertilizer-use efficiencies.To investigate the advantage of alternate partial root-zone irrigation(AI)on water-and nitrogen(N)-use efficiencies of tomato modified by water and N management,taking conventional irrigation(CI)as the control,the effects of AI on root morphology and activity,fruit yield and water and N use efficiency were studied using pot experiments.There were four combinations of irrigation levels and growing stages of tomato for AI,i.e.AI_(1)(high water(W_(H))from blooming to harvest stage(BHS)),AI_(2)(W_(H)from blooming to fruit setting stage(BFS)and low water(W_(L))at the harvest stage(HS)),AI_(3)(W_(L)at BFS and W_(H)at HS)and AI_(4)(W_(L)at BHS)at three urea rates,i.e.low urea rate(NL),middle urea rate(N_(M))and high urea rate(N_(H))in the form of urea.Irrigation quotas for W_(H)and W_(L)in AI at BFS or HS were 80%and 60%of that in CI,respectively.Compared to CI,AI decreased water consumption by 16.0%-33.1%and increased water use efficiency of yield(WUE_(y))and dry mass(WUE_(d))by 6.7%-11.9%and 10.2%-15.9%,respectively.AI_(1)did not decline yield,total N uptake(TNU)and N use efficiency(NUE)significantly.Compared to NL,N_(M)enhanced tomato yield,TNU,WUE_(y)and WUE_(d)by 28.5%,35.3%,22.6%and 16.3%,respectively.Compared to CINL,AI_(1)N_(M)reduced water consumption by 12.5%,but increased tomato yield,TNU,WUE_(y)and WUE_(d)by 35.5%,58.4%,54.4%and 53.7%,respectively.Therefore,AI_(1)can improve water use efficiency and total N uptake of tomato simultaneously at medium urea rate.展开更多
Alternate partial root-zone irrigation(APRI)can improve water use efficiency in arid areas. However,the effectiveness and outcomes of different frequencies of APRI on water uptake capacity and physiological water use ...Alternate partial root-zone irrigation(APRI)can improve water use efficiency in arid areas. However,the effectiveness and outcomes of different frequencies of APRI on water uptake capacity and physiological water use have not been reported. A two-year field experiment was conducted with two irrigation amounts(400 and500 mm) and three irrigation methods(conventional irrigation, APRI with high and low frequencies). Root length density, stomatal conductance, photosynthetic rate,transpiration rate, leaf water use efficiency, midday stem and leaf water potentials were measured. The results show that in comparison with conventional irrigation, APRI with high frequency significantly increased root length density and decreased water potentials and stomatal conductance.No differences in the above indicators between the two APRI frequencies were detected. A significantly positive relationship between stomatal conductance and root length density was found under APRI. Overall, alternate partial root-zone irrigation with high frequency has a great potential to promote root growth, expand water uptake capacity and reduce unproductive water loss in the arid apple production area.展开更多
A pot experiment was conducted to investigate the effects of different water and nitrogen supply amounts on the comprehensive assessment of tomato fruit quality and root growth parameters under alternate partial root-...A pot experiment was conducted to investigate the effects of different water and nitrogen supply amounts on the comprehensive assessment of tomato fruit quality and root growth parameters under alternate partial root-zone irrigation.Three upper irrigation limitations(i.e.70%(W1),80%(W2)and 90%(W3)of field capacity,respectively)and three N-fertilizer levels(i.e.0.18(N1),0.30(N2)and 0.42(N3)g/kg soil,respectively)were arranged with a randomized complete block design,and alternate partial root-zone irrigation method was applied.Results showed that fruit yields under deficit irrigation(W1 and W2)were decreased by 6.9%and 2.0%respectively compared with W3 under N1 level.Yields of tomato under W1N1 and W1N2 combinations were also reduced by 10.3%and 7.2%,respectively compared with W1N3 combination.Root dry weight,root length,root surface area and root volume were all increased in W1N2 treatment.According to two-way ANOVA,the root parameters except root dry weight,were extremely sensitive to water,nitrogen and the cross effect of the two factors.TSS(total soluble solids),SS(soluble sugars)and OA(organic acid)in the fruits increased with the decrease in irrigation water,OA and NC reduced with decreasing amount of nitrogen.Moreover,within an appropriate range,as more irrigation water and nitrogen were applied,the higher VC(vitamin C)and lycopene contents were identified in the fruits.Eventually,the combinational evaluation method(i.e.entropy method and gray relational analysis)showed that W2N2 ranked highest in comprehensive fruit quality.Therefore,considering the tradeoff between fruit comprehensive quality and yields,upper irrigation limitation of 80%θf and N-fertilizer of 0.30 g/kg soil with alternate partial root-zone irrigation was the optimal cultivation strategy for the greenhouse tomato in autumn-winter season in northwest China.展开更多
Aims Soil lead contamination has become increasingly serious and phytoremediation can provide an effective way to reclaim the contaminated soils.This study aims to examine the growth,lead resistance and lead accumulat...Aims Soil lead contamination has become increasingly serious and phytoremediation can provide an effective way to reclaim the contaminated soils.This study aims to examine the growth,lead resistance and lead accumulation of mulberry(Morus alba L.)seedlings at four levels of soil lead contamination with or without biochar addition under normal or alternative partial root-zone irrigation(APRI).Methods We conducted a three-factor greenhouse experiment with biochar(with vs.without biochar addition),irrigation method(APRI vs.normal irrigation)and four levels of soil lead(0,50,200 and 800 mg·kg^(-1)).The performance of the seedlings under different treatments was evaluated by measuring growth traits,osmotic substances,antioxidant enzymes and lead accumulation and translocation.Important Findings The results reveal that mulberry had a strong ability to acclimate to soil lead contamination,and that biochar and APRI synergistically increased the biomass and surface area of absorption root across all levels of soil lead.The seedlings were able to resist the severe soil lead contamination(800 mg·kg^(-1) Pb)by adjusting glutathione metabolism,and enhancing the osmotic and oxidative regulating capacity via increasing proline content and the peroxidase activity.Lead ions in the seedlings were primarily concentrated in roots and exhibited a dose–effect associated with the lead concentration in the soil.Pb,biochar and ARPI interactively affected Pb concentrations in leaves and roots,translocation factor and bioconcentration.Our results suggest that planting mulberry trees in combination with biochar addition and APRI can be used to effectively remediate lead-contaminated soils.展开更多
This study was aimed to investigate the effects of alternative partial rootzone irrigation and nitrogen fertilizer on the potted seedlings of Plukenetia volubilis.A total of 7 treatments were designed with three facto...This study was aimed to investigate the effects of alternative partial rootzone irrigation and nitrogen fertilizer on the potted seedlings of Plukenetia volubilis.A total of 7 treatments were designed with three factors, i.e., irrigation amount, irrigation mode and nitrogen fertilizer. The growth, photosynthesis and water use efficiency were analyzed. The results showed that compared with those under full irrigation, the biomass and water consumption under alternative partial root-zone irrigation were reduced by 5% and 75%, respectively, and the water use efficiency was increased by 60%. Under severe drought conditions, the root cap ratio in the nitrogen fertilizer treatment group was increased by 30%; the leaf area index, photosynthetic rate and biomass under alternative partial root-zone irrigation were reduced by 38%, 9% and 18%, respectively. It indicates that under severe drought conditions, alternative partial root-zone irrigation is not suitable to be matched with application of nitrogen fertilizer. In short, under moderate drought conditions, alternative partial root-zone irrigation could reduce transpiration and improve water use efficiency, and it is an effective water-saving irrigation technology for the plantation of P.volubilis plants.展开更多
Due to the global expansion of irrigated areas and the limited availability of irrigation water, it is necessary to optimize water use in order to maximize crop yields under water deficit conditions. To evaluate the y...Due to the global expansion of irrigated areas and the limited availability of irrigation water, it is necessary to optimize water use in order to maximize crop yields under water deficit conditions. To evaluate the yield response of two processing tomato hybrids (Ercole and Genius) grown under different irrigation treatments, a field trial was conducted during the 2008 growing season in Southern Italy. Three irrigation treatments were used: the restitution of 70% of maximum evapotranspiration (ETc) both under "Deficit Irrigation" (70DI) and "Partial Root-zone Drying" (70PRD) strategies; full irrigated (FI: 100% ETc). The two water deficit irrigation treatments (DI and PRD) showed stomatal conductance values lower than FI treatment and saved a substantial amount of water maintaining reasonable marketable yield. Moreover, PRD strategy showed slightly higher "Water Use Efficiency" (WUE) values than DI. Finally, "yield response factor" (Ky) showed always values less than unity, indicating the possibility to adopt, within certain limited condition, both DI and PRD in field-grown processing tomato cultivated in Southern Italy. In conclusion, in our experimental conditions, deficit irrigation practices seem to be acceptable relatively to processing tomato yield aspects and Ky could be promoted as a useful indicator for irrigation in water deficit conditions.展开更多
Field experiments were conducted for two years to investigate the benefits of alternate furrow irrigation on fruit yield, quality and water use efficiency of grape (Vitis vinifera L. cv. Rizamat) in the arid region ...Field experiments were conducted for two years to investigate the benefits of alternate furrow irrigation on fruit yield, quality and water use efficiency of grape (Vitis vinifera L. cv. Rizamat) in the arid region of Northwest China. Two irrigation treatments were included, i.e., conventional furrow irrigation (CFI, two root-zones were simultaneously irrigated during the consecutive irrigation) and alternate partial root-zone furrow irrigation (AFI, two root-zones were alternatively irrigated during the consecutive irrigation). Results indicate that AFI maintained similar photosynthetic rate (Pn) but with a reduced transpiration rate when compared to CFI. As a consequence, AFI improved water use efficiency based on evapotranspiration (WUEEr, fruit yield over water consumed) and irrigation (WUE~, fruit yield over water irrigated) by 30.0 and 34.5%, respectively in 2005, and by 12.7 and 17.7%, respectively in 2006. AFI also increased the edible percentage of berry by 2.91-4.79% significantly in both years. Vitamin C (Vc) content content of berry was increased by 25.6-37.5%, and tritrated acidity (TA) was reduced by 9.5-18.1% in AFI. This resulted in an increased total soluble solid content (TSS) to TA ratio (TSS/TA) by 11.5-16.7% when compared to CFI in both years. Our results indicate that alternate furrow irrigation is a practical way to improve grape fruit quality and water use efficiency for irrigated crops in arid areas.展开更多
Maize is widely planted throughout the world and has the highest yield of all the cereal crops. The arid region of North- west China has become the largest base for seed-maize production, but water shortage is the bot...Maize is widely planted throughout the world and has the highest yield of all the cereal crops. The arid region of North- west China has become the largest base for seed-maize production, but water shortage is the bottleneck for its long-term sustainability. Investigating the transpiration of seed-maize plants will offer valuable information for suitable planting and irrigation strategies in this arid area. In this study, stem flow was measured using a heat balance method under alternate furrow irrigation and double-row ridge planting. Meteorological factors, soil water content (e), soil temperature (Ts) and leaf area (LA) were also monitored during 2012 and 2013. The diurnal stem flow and seasonal dynamics of maize plants in the zones of south side female parent (SFP), north side female parent (NFP) and male parent (MP) were investigated. The order of stem flow rate was: SFP〉MP〉NFP. The relationships between stem flow and influential factors during three growth stages at different time scales were analyzed. On an hourly scale, solar radiation (Rs) was the main driving factor of stem flow. The influence of air temperature (Ta) during the maturity stage was significantly higher than in other periods. On a daily scale, Rs was the main driving factor of stem flow during the heading stage. During the filling growth stage, the main driving factor of NFP and MP stem flow was RH and Ts, respectively. However, during the maturity stage, the environ- mental factors had no significant influence on seed-maize stem flow. For different seed-maize plants, the main influential factors were different in each of the three growing seasons. Therefore, we identified them to accurately model the FP and MP stem flow and applied precision irrigation under alternate partial root-zone furrow irrigation to analyze major factors affecting stem flow in different scales.展开更多
[目的]探究不同灌溉方式和灌水量对土壤水盐变化规律及燕麦生长特征的影响,为提高盐碱地作物的生产效能和土壤水分管理提供科学参考。[方法]采用盆栽试验,设置3种灌溉方式:常规灌溉、固定单侧灌溉(fixed unilateral root zone irrigatio...[目的]探究不同灌溉方式和灌水量对土壤水盐变化规律及燕麦生长特征的影响,为提高盐碱地作物的生产效能和土壤水分管理提供科学参考。[方法]采用盆栽试验,设置3种灌溉方式:常规灌溉、固定单侧灌溉(fixed unilateral root zone irrigation,FURI)、交替灌溉(alternative partial root zone irrigation,APRI),3组灌水量:W_1(60%θ_f~70%θ_f,θ_f为田间持水率),W_2(70%θ_f~80%θ_f)和W_3(80%θ_f~90%θ_f),以常规灌溉作为对照,共9组交互处理。[结果](1)不同灌溉方式下,土壤各层含水率变化趋势基本一致,随灌水量增加洗盐效果越显著,常规灌溉的深层含水率总体高于其他两种灌溉方式。(2)燕麦株高、叶绿素相对含量(relative chlorophyll content of leaves,SPAD)、品质随灌水量的增加而上升,与常规灌溉相比,W_2灌溉水平下,分根交替灌溉处理的粗脂肪,粗蛋白,β-葡聚糖含量分别增加7.02%,3.76%,6.06%,但降低了燕麦叶片的SPAD值,影响其光合能力。(3)随着燕麦生育期的推进,土壤盐分均呈现不同程度的累积,分根交替灌溉的积盐率最低,同时对燕麦根系生长、水分利用效率及产量影响显著,其中根系总长、根系总表面积、根系总体积较相同灌水量(W_2)的常规灌溉分别增加6.75%,6.92%,12.5%,水分利用效率提高17.32%。[结论]采用分根交替灌溉方式下的中等灌水量(W_2)有利于提高燕麦的生产效能,对盐分累积的控制效果较好。展开更多
基金supported by the National Natural Science Foundation of China(51809189)the Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources,China(2019002)。
文摘Alternate partial root-zone drip fertigation (ADF) is a combination of alternating irrigation and drip fertigation,with the potential to save water and increase nitrogen (N) fertilizer efficiency.A 2-year greenhouse experiment was conducted to evaluate the effect of different fertigation frequencies on the distribution of soil moisture and nutrients and tomato yield under ADF.The treatments included three ADF frequencies with intervals of 3 days (F3),6 days (F6) and 12 days (F12),and conventional drip fertigation as a control (CK),which was fertilized once every 6 days.For the ADF treatments,two drip tapes were placed 10 cm away on each side of the tomato row,and alternate drip irrigation was realized using a manual valve on the distribution tapes.For the CK treatment,a drip tape was located close to the roots of the tomato plants.The total N application rate of all treatments was 180 kg ha^(-1).The total irrigation amounts applied to the CK treatment were450.6 and 446.1 mm in 2019 and 2020,respectively;and the irrigation amounts applied to the ADF treatments were 60%of those of the CK treatment.The F3 treatment resulted in water and N being distributed mainly in the 0–40-cm soil layer with less water and N being distributed in the 40–60-cm soil layer.The F6 treatment led to 21.0 and 29.0%higher 2-year average concentration of mineral N in the 0–20 and 20–40-cm soil layer,respectively and a 23.0%lower N concentration in the 40–60-cm soil layer than in the CK treatment.The 2-year average tomato yields of the F3,F6,F12,and CK treatments were 107.5,102.6,87.2,and 98.7 t ha^(-1),respectively.The tomato yield of F3 was significantly higher (23.3%) than that in the F12 treatment,whereas there was no significant difference between the F3 and F6 treatment.The F6 treatment resulted in yield similar to the CK treatment,indicating that ADF could maintain tomato yield with a 40%saving in water use.Based on the distribution of water and N,and tomato yield,a fertigation frequency of 6 days under ADF should be considered as a water-saving strategy for greenhouse tomato production.
基金This study was supported by National Natural Science Fund of China(51469010,51109102,51769010 and 51469003)Visiting Scholar Fund of Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of Ministry of Education,Northwest A&F University.
文摘Traditional water and fertilizer inputs are often much higher than the actual demands of tomato,which causes a reduction in water-and fertilizer-use efficiencies.To investigate the advantage of alternate partial root-zone irrigation(AI)on water-and nitrogen(N)-use efficiencies of tomato modified by water and N management,taking conventional irrigation(CI)as the control,the effects of AI on root morphology and activity,fruit yield and water and N use efficiency were studied using pot experiments.There were four combinations of irrigation levels and growing stages of tomato for AI,i.e.AI_(1)(high water(W_(H))from blooming to harvest stage(BHS)),AI_(2)(W_(H)from blooming to fruit setting stage(BFS)and low water(W_(L))at the harvest stage(HS)),AI_(3)(W_(L)at BFS and W_(H)at HS)and AI_(4)(W_(L)at BHS)at three urea rates,i.e.low urea rate(NL),middle urea rate(N_(M))and high urea rate(N_(H))in the form of urea.Irrigation quotas for W_(H)and W_(L)in AI at BFS or HS were 80%and 60%of that in CI,respectively.Compared to CI,AI decreased water consumption by 16.0%-33.1%and increased water use efficiency of yield(WUE_(y))and dry mass(WUE_(d))by 6.7%-11.9%and 10.2%-15.9%,respectively.AI_(1)did not decline yield,total N uptake(TNU)and N use efficiency(NUE)significantly.Compared to NL,N_(M)enhanced tomato yield,TNU,WUE_(y)and WUE_(d)by 28.5%,35.3%,22.6%and 16.3%,respectively.Compared to CINL,AI_(1)N_(M)reduced water consumption by 12.5%,but increased tomato yield,TNU,WUE_(y)and WUE_(d)by 35.5%,58.4%,54.4%and 53.7%,respectively.Therefore,AI_(1)can improve water use efficiency and total N uptake of tomato simultaneously at medium urea rate.
基金supported by the National Natural Science Fundation of China (51621061, 91425302) the 111 Program of Introducing Talents of Discipline to Universities (B14002)
文摘Alternate partial root-zone irrigation(APRI)can improve water use efficiency in arid areas. However,the effectiveness and outcomes of different frequencies of APRI on water uptake capacity and physiological water use have not been reported. A two-year field experiment was conducted with two irrigation amounts(400 and500 mm) and three irrigation methods(conventional irrigation, APRI with high and low frequencies). Root length density, stomatal conductance, photosynthetic rate,transpiration rate, leaf water use efficiency, midday stem and leaf water potentials were measured. The results show that in comparison with conventional irrigation, APRI with high frequency significantly increased root length density and decreased water potentials and stomatal conductance.No differences in the above indicators between the two APRI frequencies were detected. A significantly positive relationship between stomatal conductance and root length density was found under APRI. Overall, alternate partial root-zone irrigation with high frequency has a great potential to promote root growth, expand water uptake capacity and reduce unproductive water loss in the arid apple production area.
基金support from the National High-Tech 863 Project of China(2013AA103004)the program of Water Conservancy Science and Technology Plan of shaanxi Province(2014slkj-17).
文摘A pot experiment was conducted to investigate the effects of different water and nitrogen supply amounts on the comprehensive assessment of tomato fruit quality and root growth parameters under alternate partial root-zone irrigation.Three upper irrigation limitations(i.e.70%(W1),80%(W2)and 90%(W3)of field capacity,respectively)and three N-fertilizer levels(i.e.0.18(N1),0.30(N2)and 0.42(N3)g/kg soil,respectively)were arranged with a randomized complete block design,and alternate partial root-zone irrigation method was applied.Results showed that fruit yields under deficit irrigation(W1 and W2)were decreased by 6.9%and 2.0%respectively compared with W3 under N1 level.Yields of tomato under W1N1 and W1N2 combinations were also reduced by 10.3%and 7.2%,respectively compared with W1N3 combination.Root dry weight,root length,root surface area and root volume were all increased in W1N2 treatment.According to two-way ANOVA,the root parameters except root dry weight,were extremely sensitive to water,nitrogen and the cross effect of the two factors.TSS(total soluble solids),SS(soluble sugars)and OA(organic acid)in the fruits increased with the decrease in irrigation water,OA and NC reduced with decreasing amount of nitrogen.Moreover,within an appropriate range,as more irrigation water and nitrogen were applied,the higher VC(vitamin C)and lycopene contents were identified in the fruits.Eventually,the combinational evaluation method(i.e.entropy method and gray relational analysis)showed that W2N2 ranked highest in comprehensive fruit quality.Therefore,considering the tradeoff between fruit comprehensive quality and yields,upper irrigation limitation of 80%θf and N-fertilizer of 0.30 g/kg soil with alternate partial root-zone irrigation was the optimal cultivation strategy for the greenhouse tomato in autumn-winter season in northwest China.
基金funded by the Innovative Foundation of Mulberry and Silkworm Research Institute,Chinese Academy of Agricultural Sciences(16JK005).
文摘Aims Soil lead contamination has become increasingly serious and phytoremediation can provide an effective way to reclaim the contaminated soils.This study aims to examine the growth,lead resistance and lead accumulation of mulberry(Morus alba L.)seedlings at four levels of soil lead contamination with or without biochar addition under normal or alternative partial root-zone irrigation(APRI).Methods We conducted a three-factor greenhouse experiment with biochar(with vs.without biochar addition),irrigation method(APRI vs.normal irrigation)and four levels of soil lead(0,50,200 and 800 mg·kg^(-1)).The performance of the seedlings under different treatments was evaluated by measuring growth traits,osmotic substances,antioxidant enzymes and lead accumulation and translocation.Important Findings The results reveal that mulberry had a strong ability to acclimate to soil lead contamination,and that biochar and APRI synergistically increased the biomass and surface area of absorption root across all levels of soil lead.The seedlings were able to resist the severe soil lead contamination(800 mg·kg^(-1) Pb)by adjusting glutathione metabolism,and enhancing the osmotic and oxidative regulating capacity via increasing proline content and the peroxidase activity.Lead ions in the seedlings were primarily concentrated in roots and exhibited a dose–effect associated with the lead concentration in the soil.Pb,biochar and ARPI interactively affected Pb concentrations in leaves and roots,translocation factor and bioconcentration.Our results suggest that planting mulberry trees in combination with biochar addition and APRI can be used to effectively remediate lead-contaminated soils.
基金Supported by National Natural Science Foundation of China(31370684)Knowledge Innovation Project of the Chinese Academy of Sciences(KSCX2EWQ17,KSCX2EWQ15)~~
文摘This study was aimed to investigate the effects of alternative partial rootzone irrigation and nitrogen fertilizer on the potted seedlings of Plukenetia volubilis.A total of 7 treatments were designed with three factors, i.e., irrigation amount, irrigation mode and nitrogen fertilizer. The growth, photosynthesis and water use efficiency were analyzed. The results showed that compared with those under full irrigation, the biomass and water consumption under alternative partial root-zone irrigation were reduced by 5% and 75%, respectively, and the water use efficiency was increased by 60%. Under severe drought conditions, the root cap ratio in the nitrogen fertilizer treatment group was increased by 30%; the leaf area index, photosynthetic rate and biomass under alternative partial root-zone irrigation were reduced by 38%, 9% and 18%, respectively. It indicates that under severe drought conditions, alternative partial root-zone irrigation is not suitable to be matched with application of nitrogen fertilizer. In short, under moderate drought conditions, alternative partial root-zone irrigation could reduce transpiration and improve water use efficiency, and it is an effective water-saving irrigation technology for the plantation of P.volubilis plants.
文摘Due to the global expansion of irrigated areas and the limited availability of irrigation water, it is necessary to optimize water use in order to maximize crop yields under water deficit conditions. To evaluate the yield response of two processing tomato hybrids (Ercole and Genius) grown under different irrigation treatments, a field trial was conducted during the 2008 growing season in Southern Italy. Three irrigation treatments were used: the restitution of 70% of maximum evapotranspiration (ETc) both under "Deficit Irrigation" (70DI) and "Partial Root-zone Drying" (70PRD) strategies; full irrigated (FI: 100% ETc). The two water deficit irrigation treatments (DI and PRD) showed stomatal conductance values lower than FI treatment and saved a substantial amount of water maintaining reasonable marketable yield. Moreover, PRD strategy showed slightly higher "Water Use Efficiency" (WUE) values than DI. Finally, "yield response factor" (Ky) showed always values less than unity, indicating the possibility to adopt, within certain limited condition, both DI and PRD in field-grown processing tomato cultivated in Southern Italy. In conclusion, in our experimental conditions, deficit irrigation practices seem to be acceptable relatively to processing tomato yield aspects and Ky could be promoted as a useful indicator for irrigation in water deficit conditions.
基金grants from the National Natural Science Foundation of China (51222905, 51079147 and 50939005)the National High-Tech R&D Program of China(863 Program, 2011AA100502)+1 种基金the Program of New Century Excellent Talents in University, Ministry of Education of China (NCET-11-0479)Hong Kong Research Grants Council, China (HKBU 262307)
文摘Field experiments were conducted for two years to investigate the benefits of alternate furrow irrigation on fruit yield, quality and water use efficiency of grape (Vitis vinifera L. cv. Rizamat) in the arid region of Northwest China. Two irrigation treatments were included, i.e., conventional furrow irrigation (CFI, two root-zones were simultaneously irrigated during the consecutive irrigation) and alternate partial root-zone furrow irrigation (AFI, two root-zones were alternatively irrigated during the consecutive irrigation). Results indicate that AFI maintained similar photosynthetic rate (Pn) but with a reduced transpiration rate when compared to CFI. As a consequence, AFI improved water use efficiency based on evapotranspiration (WUEEr, fruit yield over water consumed) and irrigation (WUE~, fruit yield over water irrigated) by 30.0 and 34.5%, respectively in 2005, and by 12.7 and 17.7%, respectively in 2006. AFI also increased the edible percentage of berry by 2.91-4.79% significantly in both years. Vitamin C (Vc) content content of berry was increased by 25.6-37.5%, and tritrated acidity (TA) was reduced by 9.5-18.1% in AFI. This resulted in an increased total soluble solid content (TSS) to TA ratio (TSS/TA) by 11.5-16.7% when compared to CFI in both years. Our results indicate that alternate furrow irrigation is a practical way to improve grape fruit quality and water use efficiency for irrigated crops in arid areas.
基金grants from the National Natural Science Foundation of China (51222905, 51321001, 51439006)the National High-Tech R&D Program of China (863 Program, 2011AA100505)+1 种基金the Ministry of Water Resources of China (201201003)the Program for New Century Excellent Talents in University, Ministry of Education, China (NCET11-0479)
文摘Maize is widely planted throughout the world and has the highest yield of all the cereal crops. The arid region of North- west China has become the largest base for seed-maize production, but water shortage is the bottleneck for its long-term sustainability. Investigating the transpiration of seed-maize plants will offer valuable information for suitable planting and irrigation strategies in this arid area. In this study, stem flow was measured using a heat balance method under alternate furrow irrigation and double-row ridge planting. Meteorological factors, soil water content (e), soil temperature (Ts) and leaf area (LA) were also monitored during 2012 and 2013. The diurnal stem flow and seasonal dynamics of maize plants in the zones of south side female parent (SFP), north side female parent (NFP) and male parent (MP) were investigated. The order of stem flow rate was: SFP〉MP〉NFP. The relationships between stem flow and influential factors during three growth stages at different time scales were analyzed. On an hourly scale, solar radiation (Rs) was the main driving factor of stem flow. The influence of air temperature (Ta) during the maturity stage was significantly higher than in other periods. On a daily scale, Rs was the main driving factor of stem flow during the heading stage. During the filling growth stage, the main driving factor of NFP and MP stem flow was RH and Ts, respectively. However, during the maturity stage, the environ- mental factors had no significant influence on seed-maize stem flow. For different seed-maize plants, the main influential factors were different in each of the three growing seasons. Therefore, we identified them to accurately model the FP and MP stem flow and applied precision irrigation under alternate partial root-zone furrow irrigation to analyze major factors affecting stem flow in different scales.
文摘[目的]探究不同灌溉方式和灌水量对土壤水盐变化规律及燕麦生长特征的影响,为提高盐碱地作物的生产效能和土壤水分管理提供科学参考。[方法]采用盆栽试验,设置3种灌溉方式:常规灌溉、固定单侧灌溉(fixed unilateral root zone irrigation,FURI)、交替灌溉(alternative partial root zone irrigation,APRI),3组灌水量:W_1(60%θ_f~70%θ_f,θ_f为田间持水率),W_2(70%θ_f~80%θ_f)和W_3(80%θ_f~90%θ_f),以常规灌溉作为对照,共9组交互处理。[结果](1)不同灌溉方式下,土壤各层含水率变化趋势基本一致,随灌水量增加洗盐效果越显著,常规灌溉的深层含水率总体高于其他两种灌溉方式。(2)燕麦株高、叶绿素相对含量(relative chlorophyll content of leaves,SPAD)、品质随灌水量的增加而上升,与常规灌溉相比,W_2灌溉水平下,分根交替灌溉处理的粗脂肪,粗蛋白,β-葡聚糖含量分别增加7.02%,3.76%,6.06%,但降低了燕麦叶片的SPAD值,影响其光合能力。(3)随着燕麦生育期的推进,土壤盐分均呈现不同程度的累积,分根交替灌溉的积盐率最低,同时对燕麦根系生长、水分利用效率及产量影响显著,其中根系总长、根系总表面积、根系总体积较相同灌水量(W_2)的常规灌溉分别增加6.75%,6.92%,12.5%,水分利用效率提高17.32%。[结论]采用分根交替灌溉方式下的中等灌水量(W_2)有利于提高燕麦的生产效能,对盐分累积的控制效果较好。