The lack of a suitable rootstock to control scion growth has limited the development of high-density plantations in pear production, which is partly attributed to poor understanding of the dwarfing mechanism. In the p...The lack of a suitable rootstock to control scion growth has limited the development of high-density plantations in pear production, which is partly attributed to poor understanding of the dwarfing mechanism. In the present study, the rootstock of the dwarf-type pear (Pyrus betulaefolia)PY-9’ was identified and used as the material for anatomical analysis.PY-9’ grew to half the tree height of the normal cultivar Zhengdu’, along with fewer internodes and shorter length. Significant differences in growth rate betweenPY-9’ andZhengdu’ were detected at approximately 30 days after full bloom, which corresponded with the time of the greatest difference in water potential between the dwarf and normal cultivar.PY-9’ showed a higher photosynthetic rate thanZhengdu’. Anatomical analysis showed thatPY-9’ had higher area ratios of both phloem and xylem and more developed vascular tissues thanZhengdu’. The three-dimensional reconstructed skeleton of the xylem from X-ray computed tomography scanning revealed greater intervessel connectivity inZhengdu’ than inPY-9’, which could contribute to the more vigorous growth ofZhengdu’. This study thus provides the first comparison of the microstructural properties of xylem elements between a dwarfing-type and vigorous-type pear rootstock, providing new insights into the dwarfing mechanism in pear and facilitating breeding of dwarf pear rootstocks to increase crop productivity.展开更多
To address the challenges associated with difficult casing running,limited annular space,and poor cementing quality in the completion of ultra-deep wells,the extreme line casing offers an effective solution over conve...To address the challenges associated with difficult casing running,limited annular space,and poor cementing quality in the completion of ultra-deep wells,the extreme line casing offers an effective solution over conventional casings.However,due to its smaller size,the joint strength of extreme line casing is reduced,which may cause failure when running in the hole.To address this issue,this study focuses on the CST-ZTΦ139.7 mm×7.72 mm extreme line casing and employs the elastic-plastic mechanics to establish a comprehensive analysis of the casing joint,taking into account the influence of geometric and material nonlinearities.A finite element model is developed to analyze the forces and deformations of the extreme line casing joint under axial tension and external collapse load.The model investigates the stress distribution of each thread tooth subjected to various tensile forces and external pressures.Additionally,the tensile strength and crushing strength of the extreme line casing joint are determined through both analytical and experimental approaches.The findings reveal that,under axial tensile load,the bearing surface of each thread tooth experiences uneven stress,with relatively high equivalent stress at the root of each thread tooth.The end thread teeth are valuable spots for failure.It is observed that the critical fracture axial load of thread decreases linearly with the increase of thread tooth sequence.Under external pressure,the circumferential stress is highest at the small end of the external thread,leading to yield deformation.The tensile strength of the joint obtained from the finite element model exhibits a relative error of less than 7%compared to the analytical and experimental values,proving the reliability of the finite element model.The tensile strength of the joint is 3091.9 k N.Moreover,in terms of anti-collapse capability,the joints demonstrate higher resistance to collapse compared to the casing body,which is consistent with the test results where the pipe body experiences collapse and failure while the joints remain intact during the experiment.The failure load of the casing body under external collapse pressure is 87.4 MPa.The present study provides a basic understanding of the mechanical strengths of extreme line casing joint.展开更多
Research of capture mechanisms with strong capture adaptability and stable grasp is important to solve the problem of launch and recovery of torpedo-shaped autonomous underwater vehicles(AUVs).A multi-loop coupling ca...Research of capture mechanisms with strong capture adaptability and stable grasp is important to solve the problem of launch and recovery of torpedo-shaped autonomous underwater vehicles(AUVs).A multi-loop coupling capture mechanism with strong adaptability and high retraction rate has been proposed for the launch and recovery of torpedo-shaped AUVs with different morphological features.Firstly,the principle of capturing motion retraction is described based on the appearance characteristics of torpedo-shaped AUVs,and the configuration synthesis of the capture mechanism is carried out using the method of constrained chain synthesis.Secondly,the screw theory is employed to analyze the degree of freedom(DoF)of the capture mechanism.Then,the 3D model of the capture mechanism is established,and the kinematics and dynamics simulations are carried out.Combined with the capture orientation requirements of the capture mechanism,the statics and vibration characteristics analyses are carried out.Furthermore,considering the capture process and the underwater working environment,the motion characteristics and hydraulics characteristics of the capture mechanism are analyzed.Finally,a principle prototype is developed and the torpedo-shaped AUVs capture experiment is completed.The work provides technical reserves for the research and development of AUV capture special equipment.展开更多
Multimodal sentiment analysis aims to understand people’s emotions and opinions from diverse data.Concate-nating or multiplying various modalities is a traditional multi-modal sentiment analysis fusion method.This fu...Multimodal sentiment analysis aims to understand people’s emotions and opinions from diverse data.Concate-nating or multiplying various modalities is a traditional multi-modal sentiment analysis fusion method.This fusion method does not utilize the correlation information between modalities.To solve this problem,this paper proposes amodel based on amulti-head attention mechanism.First,after preprocessing the original data.Then,the feature representation is converted into a sequence of word vectors and positional encoding is introduced to better understand the semantic and sequential information in the input sequence.Next,the input coding sequence is fed into the transformer model for further processing and learning.At the transformer layer,a cross-modal attention consisting of a pair of multi-head attention modules is employed to reflect the correlation between modalities.Finally,the processed results are input into the feedforward neural network to obtain the emotional output through the classification layer.Through the above processing flow,the model can capture semantic information and contextual relationships and achieve good results in various natural language processing tasks.Our model was tested on the CMU Multimodal Opinion Sentiment and Emotion Intensity(CMU-MOSEI)and Multimodal EmotionLines Dataset(MELD),achieving an accuracy of 82.04% and F1 parameters reached 80.59% on the former dataset.展开更多
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp...Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.展开更多
BACKGROUND Imipenem is a highly effective carbapenem antibiotic,which is widely used in the treatment of many serious bacterial infections.At the same time,it can also cause some adverse reactions,mental abnormalities...BACKGROUND Imipenem is a highly effective carbapenem antibiotic,which is widely used in the treatment of many serious bacterial infections.At the same time,it can also cause some adverse reactions,mental abnormalities are the most concerned central nervous system adverse reactions.Different patients respond differently to imipenem,and the effect of imipenem on psychiatric disorders is unclear.Therefore,meta-analysis summarizing the results of multiple previous studies can provide stronger evidence support for clinical guidelines to guide clinical rational use of imipenem to minimize risks.After reviewing the literature published between 2003 and 2017,seven controlled trials with a total of 550 patients were included,with 273 and 277 patients in the control and experimental groups,respectively.The sample size of the study ranged from a minimum of 30 cases to a maximum of 61 cases.Patients in the experimental group were treated with imipenem while the control group was treated with conventional drugs.Meta-analysis showed that the incidence of mental disorders in the experimental group was higher than that in the control group(odds ratio=3.66,95%confidence interval:1.11-12.11,P=0.030);however,there was no significant difference in the incidence of adverse reactions between the two groups(odds ratio=0.05,95%confidence interval:0.00 to 0.10,P=0.060).Funnel diagrams showed that the scattered points of each study were symmetrical and distributed in an inverted funnel shape;therefore,there was no publication bias.CONCLUSION Imipenem can cause mental disorders in patients.However,the low quality of the included literature may have affected the final results.Therefore,it is necessary to conduct a high-quality randomized controlled study with multiple samples to further confirm the mechanism of imipenem-induced mental disorders and provide effective guidance for clinical treatment.展开更多
In order to analyze the pavement stress caused by vehicle bumping at an approach slab, a simplified four-wheeled bi- axle vehicle-moving model is proposed. The effect of damping and vibration reduction in the process ...In order to analyze the pavement stress caused by vehicle bumping at an approach slab, a simplified four-wheeled bi- axle vehicle-moving model is proposed. The effect of damping and vibration reduction in the process of vehicle-moving is not considered. Based on the position change of vehicle wheels at the approach slab, the vehicle dynamic vibration equations are summarized. Meanwhile, the undetermined coefficients of the vibration equations are obtained using the boundary and initial conditions of the vehicle. The analytical motion solutions of rear and front wheels at different stages are concluded. Consequently, a four-wheeled vehicle model is developed and vibration equations are provided, which can be used to analyze the impact of complicated stress on pavement. The results show that the excessive stress and stress concentration will occur at the approach slab, and it needs to be strengthened.展开更多
According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer str...According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer structure spanning multiple subway tunnels was proposed.Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness,and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure,we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model.The resolved established simplifiedmechanicalmodel employed finite difference technology and the Newton-Simpsonmethod,elucidating the mechanical mechanism of the transfer structure.The research findings suggest that the load carried by the upper structural columns can be transferred to the pile foundation beneath the beams through the transfer structure,subsequently reaching the deep soil layer and ensuring minimal impact on adjacent tunnels.The established simplified analysis method can be used for stress analysis of the transfer structure,concurrently considering soil stratification,pile foundation behavior,and plate action.The pile length,pile section size,and beam section size within the transfer structure should account for the characteristics of the upper load,ensuring an even distribution of the beam bending moment.展开更多
The face stability problem is a major concern for tunnels excavated in rock masses governed by the Hoek-Brown strength criterion.To provide an accurate prediction for the theoretical solution of the critical face pres...The face stability problem is a major concern for tunnels excavated in rock masses governed by the Hoek-Brown strength criterion.To provide an accurate prediction for the theoretical solution of the critical face pressure,this study adopts the piecewise linear method(PLM)to account for the nonlinearity of the strength envelope and proposes a new multi-horn rotational mechanism based on the Hoek-Brown strength criterion and the associative flow rule.The analytical solution of critical support pressure is derived from the energy-work balance equation in the framework of the plastic limit theorem;it is formulated as a multivariable nonlinear optimization problem relying on 2m dependent variables(m is the number of segments).Meanwhile,two classic linearized measures,the generalized tangential technique(GTT)and equivalent Mohr-Coulomb parameters method(EMM),are incorporated into the analysis for comparison.Surprisingly,the parametric study indicates a significant improvement in support pressure by up to 13%compared with the GTT,and as expected,the stability of the tunnel face is greatly influenced by the rock strength parameters.The stress distribution on the rupture surface is calculated to gain an intuitive understanding of the failure at the limit state.Although the limit analysis is incapable of calculating the true stress distribution in rock masses,a rough approximation of the stress vector on the rupture surface is permitted.In the end,sets of normalized face pressure are provided in the form of charts for a quick assessment of face stability in rock masses.展开更多
Aiming at the problem that existing models in aspect-level sentiment analysis cannot fully and effectively utilize sentence semantic and syntactic structure information, this paper proposes a graph neural network-base...Aiming at the problem that existing models in aspect-level sentiment analysis cannot fully and effectively utilize sentence semantic and syntactic structure information, this paper proposes a graph neural network-based aspect-level sentiment classification model. Self-attention, aspectual word multi-head attention and dependent syntactic relations are fused and the node representations are enhanced with graph convolutional networks to enable the model to fully learn the global semantic and syntactic structural information of sentences. Experimental results show that the model performs well on three public benchmark datasets Rest14, Lap14, and Twitter, improving the accuracy of sentiment classification.展开更多
The suitable cement concrete pavement for mountainous areas is a form of low-cost cement concrete pavement that uses unconventional graded stones in different proportions in ordinary concrete,allowing the concrete to ...The suitable cement concrete pavement for mountainous areas is a form of low-cost cement concrete pavement that uses unconventional graded stones in different proportions in ordinary concrete,allowing the concrete to fully contact the stones and form a stable and well-bonded slab with large particle stones.As large particle stones replace a certain volume of cement concrete,they have good economic performance and are a low-cost form of cement concrete pavement.This study researches the use of ANSYS tools to analyze the influence of geometric dimensions and material properties of rigid pavement structural layers on the mechanical properties of pavement structures.展开更多
As the support mechanism of space-borne antennas,space deployable antenna mechanism belongs to complex multi-closed-loop coupling mechanism,configuration design and dynamic analysis are more difficult than general par...As the support mechanism of space-borne antennas,space deployable antenna mechanism belongs to complex multi-closed-loop coupling mechanism,configuration design and dynamic analysis are more difficult than general parallel mechanism.In this paper,an unequal-length scissors mechanism(ULSM)is proposed by changing the position of the internal rotational joint through a basic scissors mechanism.A scissors hoop-rib truss deployable antenna mechanism(SHRTDAM)is constructed by replacing the parabolic rib with the ULSM.Kinematic analysis of SHRTDAM is conducted,and the degree of freedom(DOF)of the whole antenna mechanism is analyzed based on screw theory,the result showed that it has only one DOF.Velocity and acceleration characteristics of SHRTDAM are obtained by the screw derivative and rotation transformation.Based on Lagrange equation,dynamic model of this mechanism is established,the torque required to drive the mechanism is simulated and verified by Adams and MATLAB software.In addition,a ground experiment prototype of 1.5-m diameter was fabricated and a deployment test is conducted,which demonstrated the mobility and deployment performance of the whole mechanism.The mechanism proposed in this paper can provide a good reference for the design and analysis of large aperture space deployable antennas.展开更多
The large accumulation of coal gangue,a common industrial solid waste,causes severe environmental problems,and green development strategies are required to transform this waste into high-value-added products.In this s...The large accumulation of coal gangue,a common industrial solid waste,causes severe environmental problems,and green development strategies are required to transform this waste into high-value-added products.In this study,low-cost ceramsites adsorbents were prepared from waste gangue,silt coal,and peanut shells and applied to remove the organic dye methylene blue from wastewater.We investigated the microstructure of ceramsites and the effects of the sintering atmosphere,sintering temperature,and solution pH on their adsorption performance.The ceramsites sintered at 800℃under a nitrogen atmosphere exhibited the largest three-dimensional-interconnected hierarchical porous structure among the prepared ceramsites;further,it exhibited the highest methylene blue adsorption performance,with an adsorption capacity of 0.954 mg·g^(−1),adsorption efficiency of over 95%,and adsorption equilibrium time of 1 h at a solution pH of 9.The removal efficiency remained greater than 75%after five adsorption cycles.The adsorption kinetics data were analyzed using various models,including the pseudosecond-order kinetic model and Langmuir equation,and the adsorption was attributed to electrostatic interactions between the dyes and ceramsites,n-interactions,and hydrogen bonds.The prepared coal gangue ceramsites exhibited excellent adsorption capacities,removal rates,and cyclic stabilities,demonstrating their promising application prospects for the comprehensive utilization of solid waste and for wastewater treatment.展开更多
In today’s rapidly developing modern society,automobiles,as an important part of transportation and industrial fields,play a pivotal role.With the improvement of people’s living standards and the increase in traffic...In today’s rapidly developing modern society,automobiles,as an important part of transportation and industrial fields,play a pivotal role.With the improvement of people’s living standards and the increase in traffic demand,the automobile manufacturing industry has been continuously developing and growing globally.However,to cope with increasingly fierce market competition and ever-changing consumer demands,the automobile manufacturing industry is also facing the challenges of improving production efficiency,reducing costs,and improving product quality.In this context,automation technology has gradually become a major trend in the automobile manufacturing industry.As an important support of modern industry,automation technology has shown great application potential in many fields.From industrial production to daily life,automation technology can be seen everywhere.In the field of manufacturing,especially in automobile manufacturing,the application of automation technology is getting more and more attention.Automated production lines,intelligent robots,and automated warehousing systems have all changed the face of automobile manufacturing to varying degrees,bringing companies higher efficiency,more stable quality,and greater competitive advantages.The application trend of this automation technology in various fields not only meets the needs of modern industry for efficient,precise,and sustainable development but also provides new ideas and paths for the future development of the automobile manufacturing industry.展开更多
Ceramics are good alternative to metal as bearing couple materials because of their better wear resistance. A Finite Element(FE) study was performed to investigate the contact mechanics and stress distribution of Cera...Ceramics are good alternative to metal as bearing couple materials because of their better wear resistance. A Finite Element(FE) study was performed to investigate the contact mechanics and stress distribution of Ceramic-on-Ceramic (COC) hip resurfacingprostheses. It was focused in particular on a parametric study to examine the effects of radial clearance, loading,alumina coating on the implants, bone quality, and fixation of cup-bone interface. It was found that a reduction in the radialclearance had the most significant effect on the predicted contact pressure distribution among all of the parameters considered inthis study. It was determined that there was a significant influence of non-metallic materials, such as the bone underneath thebearing components, on the predicted contact mechanics. Stress shielding within the bone tissue was found to be a major concernwhen regarding the use of ceramic as an alternative to metallic resurfacing prostheses. Therefore, using alumina implantswith a metal backing was found to be the best design for ceramic resurfacing prostheses in this study. The loading, bone quality,and acetabular cup fixation conditions were found to have only minor effects on the predicted contact pressure distribution alongthe bearing surfaces.展开更多
In order to effectively cope with exponent increase of the complexity faced to the rock mechanics analysis problems and the large incompatibility existing between the information level required to model the rock mass ...In order to effectively cope with exponent increase of the complexity faced to the rock mechanics analysis problems and the large incompatibility existing between the information level required to model the rock mass and engineering and our obtainable information level at hand,the integrated approaches with intelligent characters are proposed. Many previous standard methods,such as precedent type analysis,rock classification,analytic method stress-based,basic numerical methods (BEM,FEM,DEM,hybrid),and their extended numerical methods (fully coupled) to be developed,can be selected respectively or integrated accordingly. It is alternative to develop basic/fully integrated system,and internet-based approaches. These novel methods can also be selected or integrated each other or with the standard methods to perform rock mechanics analysis. Some key techniques to develop these alternative methods are discussed. It may focus in future on developing fully integrated systems and internet-based approaches. Developing an environmental,virtual facility/space shall be firstly done for this collaborative research on internet.展开更多
A barrier-free wheelchair robot with a mechanism coupled by wheel and track is presen- ted in this paper. Using the wheelchair, the lower limb disabled persons could be more relaxed to take part in outdoor activities ...A barrier-free wheelchair robot with a mechanism coupled by wheel and track is presen- ted in this paper. Using the wheelchair, the lower limb disabled persons could be more relaxed to take part in outdoor activities whether on flat ground or stairs and obstacles in the city. The wheel- track coupling mechanism is designed and the stability of the bodywork of the wheelchair robot on the stairs is analyzed. In order to obtain the stability of wheelchair robot when it climbs obstacles, centroid projection method is applied to analyze the static stability, stability margin is proposed to provide the stability under some dynamic forces, and the push rod rotation angle in terms of the guaranteed stability margin is given. Finally, the dynamic model of the wheelchair robot based on Lagrange equation is established, which can be a theoretical foundation for the wheelchair control system design.展开更多
The strain jump across the Austenite-Martensite (A-M) interface in single crystal Cu-14wt%Al-4.12wt%Ni Shape Memory Alloys (SMAs) under uniaxial tension was studied in this paper. A crystallographic-based mechanics an...The strain jump across the Austenite-Martensite (A-M) interface in single crystal Cu-14wt%Al-4.12wt%Ni Shape Memory Alloys (SMAs) under uniaxial tension was studied in this paper. A crystallographic-based mechanics analysis on the formation and microstructure of the interface was performed. By using the high sensitive Moiré interference technique, the full-field deformation patterns during the transformation process were successfully recorded. The orientation of the habit plane (A-M interface) and the magnitude of the shape strain were determined precisely from the Moiré fringe patterns. The theoretical predictions on the habit plane normal and the shape strain were compared with the measured results and good agreements were obtained.展开更多
We propose a modified upwind finite difference fractional step scheme for the computational fluid mechanics simulations of a three-dimensional photoelectric semiconductor detector. We obtain the optimal l^2-norm error...We propose a modified upwind finite difference fractional step scheme for the computational fluid mechanics simulations of a three-dimensional photoelectric semiconductor detector. We obtain the optimal l^2-norm error estimates by using the techniques including the calculus of variations, the energy methods, the induction hypothesis, and a priori estimates. The proposed scheme is successfully applied to the simulation of the photoelectric semiconductor detectors.展开更多
The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and mo...The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and modal analysis of rotor of a composite vertical axis wind turbine was conducted by using ANSYS software.The relevant contour sketch of stress and deformation was obtained.The analysis was made for static structural mechanics,modal analysis of rotor and the total deformation and vibration profile to evaluate the influence on the working capability of the rotor.The analysis results show that the various structure parameters lie in the safety range of structural mechanics in the relative standards.The analysis showing the design safe to operate the rotor of a vertical axis wind turbine.The methods used in this study can be used as a good reference for the structural mechanics′analysis of VAWTs.展开更多
基金supported by grants from the Agriculture Science and Technology of Shandong Province (Grant No.2019YQ015)the Agricultural Variety Improvement Project of Shandong Province (Grant No.2022LZGC011)the earmarked fund for CARS (Grant No.CARS-28-07)。
文摘The lack of a suitable rootstock to control scion growth has limited the development of high-density plantations in pear production, which is partly attributed to poor understanding of the dwarfing mechanism. In the present study, the rootstock of the dwarf-type pear (Pyrus betulaefolia)PY-9’ was identified and used as the material for anatomical analysis.PY-9’ grew to half the tree height of the normal cultivar Zhengdu’, along with fewer internodes and shorter length. Significant differences in growth rate betweenPY-9’ andZhengdu’ were detected at approximately 30 days after full bloom, which corresponded with the time of the greatest difference in water potential between the dwarf and normal cultivar.PY-9’ showed a higher photosynthetic rate thanZhengdu’. Anatomical analysis showed thatPY-9’ had higher area ratios of both phloem and xylem and more developed vascular tissues thanZhengdu’. The three-dimensional reconstructed skeleton of the xylem from X-ray computed tomography scanning revealed greater intervessel connectivity inZhengdu’ than inPY-9’, which could contribute to the more vigorous growth ofZhengdu’. This study thus provides the first comparison of the microstructural properties of xylem elements between a dwarfing-type and vigorous-type pear rootstock, providing new insights into the dwarfing mechanism in pear and facilitating breeding of dwarf pear rootstocks to increase crop productivity.
基金financially supported by National Natural Science foundation of China(Grant No.52104006)Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(Grant No.2020CX040202)。
文摘To address the challenges associated with difficult casing running,limited annular space,and poor cementing quality in the completion of ultra-deep wells,the extreme line casing offers an effective solution over conventional casings.However,due to its smaller size,the joint strength of extreme line casing is reduced,which may cause failure when running in the hole.To address this issue,this study focuses on the CST-ZTΦ139.7 mm×7.72 mm extreme line casing and employs the elastic-plastic mechanics to establish a comprehensive analysis of the casing joint,taking into account the influence of geometric and material nonlinearities.A finite element model is developed to analyze the forces and deformations of the extreme line casing joint under axial tension and external collapse load.The model investigates the stress distribution of each thread tooth subjected to various tensile forces and external pressures.Additionally,the tensile strength and crushing strength of the extreme line casing joint are determined through both analytical and experimental approaches.The findings reveal that,under axial tensile load,the bearing surface of each thread tooth experiences uneven stress,with relatively high equivalent stress at the root of each thread tooth.The end thread teeth are valuable spots for failure.It is observed that the critical fracture axial load of thread decreases linearly with the increase of thread tooth sequence.Under external pressure,the circumferential stress is highest at the small end of the external thread,leading to yield deformation.The tensile strength of the joint obtained from the finite element model exhibits a relative error of less than 7%compared to the analytical and experimental values,proving the reliability of the finite element model.The tensile strength of the joint is 3091.9 k N.Moreover,in terms of anti-collapse capability,the joints demonstrate higher resistance to collapse compared to the casing body,which is consistent with the test results where the pipe body experiences collapse and failure while the joints remain intact during the experiment.The failure load of the casing body under external collapse pressure is 87.4 MPa.The present study provides a basic understanding of the mechanical strengths of extreme line casing joint.
基金supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20220649)the Natural Science Foundation of the Jiangsu Higher Education Institutions(Grant No.23KJB460010)+1 种基金the Key R&D Program of Jiangsu Province(Grant No.BE2022062)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX23_2143).
文摘Research of capture mechanisms with strong capture adaptability and stable grasp is important to solve the problem of launch and recovery of torpedo-shaped autonomous underwater vehicles(AUVs).A multi-loop coupling capture mechanism with strong adaptability and high retraction rate has been proposed for the launch and recovery of torpedo-shaped AUVs with different morphological features.Firstly,the principle of capturing motion retraction is described based on the appearance characteristics of torpedo-shaped AUVs,and the configuration synthesis of the capture mechanism is carried out using the method of constrained chain synthesis.Secondly,the screw theory is employed to analyze the degree of freedom(DoF)of the capture mechanism.Then,the 3D model of the capture mechanism is established,and the kinematics and dynamics simulations are carried out.Combined with the capture orientation requirements of the capture mechanism,the statics and vibration characteristics analyses are carried out.Furthermore,considering the capture process and the underwater working environment,the motion characteristics and hydraulics characteristics of the capture mechanism are analyzed.Finally,a principle prototype is developed and the torpedo-shaped AUVs capture experiment is completed.The work provides technical reserves for the research and development of AUV capture special equipment.
基金supported by the National Natural Science Foundation of China under Grant 61702462the Henan Provincial Science and Technology Research Project under Grants 222102210010 and 222102210064+2 种基金the Research and Practice Project of Higher Education Teaching Reform in Henan Province under Grants 2019SJGLX320 and 2019SJGLX020the Undergraduate Universities Smart Teaching Special Research Project of Henan Province under Grant JiaoGao[2021]No.489-29the Academic Degrees&Graduate Education Reform Project of Henan Province under Grant 2021SJGLX115Y.
文摘Multimodal sentiment analysis aims to understand people’s emotions and opinions from diverse data.Concate-nating or multiplying various modalities is a traditional multi-modal sentiment analysis fusion method.This fusion method does not utilize the correlation information between modalities.To solve this problem,this paper proposes amodel based on amulti-head attention mechanism.First,after preprocessing the original data.Then,the feature representation is converted into a sequence of word vectors and positional encoding is introduced to better understand the semantic and sequential information in the input sequence.Next,the input coding sequence is fed into the transformer model for further processing and learning.At the transformer layer,a cross-modal attention consisting of a pair of multi-head attention modules is employed to reflect the correlation between modalities.Finally,the processed results are input into the feedforward neural network to obtain the emotional output through the classification layer.Through the above processing flow,the model can capture semantic information and contextual relationships and achieve good results in various natural language processing tasks.Our model was tested on the CMU Multimodal Opinion Sentiment and Emotion Intensity(CMU-MOSEI)and Multimodal EmotionLines Dataset(MELD),achieving an accuracy of 82.04% and F1 parameters reached 80.59% on the former dataset.
文摘Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.
基金Supported by the Education Research Program Project of Zhejiang Province,No.Y202043224.
文摘BACKGROUND Imipenem is a highly effective carbapenem antibiotic,which is widely used in the treatment of many serious bacterial infections.At the same time,it can also cause some adverse reactions,mental abnormalities are the most concerned central nervous system adverse reactions.Different patients respond differently to imipenem,and the effect of imipenem on psychiatric disorders is unclear.Therefore,meta-analysis summarizing the results of multiple previous studies can provide stronger evidence support for clinical guidelines to guide clinical rational use of imipenem to minimize risks.After reviewing the literature published between 2003 and 2017,seven controlled trials with a total of 550 patients were included,with 273 and 277 patients in the control and experimental groups,respectively.The sample size of the study ranged from a minimum of 30 cases to a maximum of 61 cases.Patients in the experimental group were treated with imipenem while the control group was treated with conventional drugs.Meta-analysis showed that the incidence of mental disorders in the experimental group was higher than that in the control group(odds ratio=3.66,95%confidence interval:1.11-12.11,P=0.030);however,there was no significant difference in the incidence of adverse reactions between the two groups(odds ratio=0.05,95%confidence interval:0.00 to 0.10,P=0.060).Funnel diagrams showed that the scattered points of each study were symmetrical and distributed in an inverted funnel shape;therefore,there was no publication bias.CONCLUSION Imipenem can cause mental disorders in patients.However,the low quality of the included literature may have affected the final results.Therefore,it is necessary to conduct a high-quality randomized controlled study with multiple samples to further confirm the mechanism of imipenem-induced mental disorders and provide effective guidance for clinical treatment.
基金The Doctoral Program of Central South University (No. 2010ybfz048)the National High Technology Research and Development Program of China (863 Program) (No. 2007AA021908)
文摘In order to analyze the pavement stress caused by vehicle bumping at an approach slab, a simplified four-wheeled bi- axle vehicle-moving model is proposed. The effect of damping and vibration reduction in the process of vehicle-moving is not considered. Based on the position change of vehicle wheels at the approach slab, the vehicle dynamic vibration equations are summarized. Meanwhile, the undetermined coefficients of the vibration equations are obtained using the boundary and initial conditions of the vehicle. The analytical motion solutions of rear and front wheels at different stages are concluded. Consequently, a four-wheeled vehicle model is developed and vibration equations are provided, which can be used to analyze the impact of complicated stress on pavement. The results show that the excessive stress and stress concentration will occur at the approach slab, and it needs to be strengthened.
基金supported by the Construction and Scientific Research Project of the Zhejiang Provincial Department of Housing and Urban-Rural Development(No.2021K126,Granted byM.J.,Long,URL:https://jst.zj.gov.cn/)the ScientificResearch Project of ChinaConstruction 4th Engineering Bureau(No.CSCEC4B-2022-KTA-10,Granted by Z.C.,Bai,URL:https://4 bur.cscec.com/)+2 种基金the Scientific Research Project of China Construction 4th Engineering Bureau(No.CSCEC4B-2023-KTA-10,Granted by D.J.,Geng,URL:https://4bur.cscec.com/)the Natural Science Foundation of Hubei Province(No.2022CFD055,Granted by N.,Dai,URL:https://kjt.hubei.gov.cn/)the National Key Research and Development Program of China under Grant No.2022YFC3803002.
文摘According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer structure spanning multiple subway tunnels was proposed.Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness,and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure,we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model.The resolved established simplifiedmechanicalmodel employed finite difference technology and the Newton-Simpsonmethod,elucidating the mechanical mechanism of the transfer structure.The research findings suggest that the load carried by the upper structural columns can be transferred to the pile foundation beneath the beams through the transfer structure,subsequently reaching the deep soil layer and ensuring minimal impact on adjacent tunnels.The established simplified analysis method can be used for stress analysis of the transfer structure,concurrently considering soil stratification,pile foundation behavior,and plate action.The pile length,pile section size,and beam section size within the transfer structure should account for the characteristics of the upper load,ensuring an even distribution of the beam bending moment.
基金supported by Fundamental Research Funds for the central universities of Central South University(No.2022ZZTS0153).
文摘The face stability problem is a major concern for tunnels excavated in rock masses governed by the Hoek-Brown strength criterion.To provide an accurate prediction for the theoretical solution of the critical face pressure,this study adopts the piecewise linear method(PLM)to account for the nonlinearity of the strength envelope and proposes a new multi-horn rotational mechanism based on the Hoek-Brown strength criterion and the associative flow rule.The analytical solution of critical support pressure is derived from the energy-work balance equation in the framework of the plastic limit theorem;it is formulated as a multivariable nonlinear optimization problem relying on 2m dependent variables(m is the number of segments).Meanwhile,two classic linearized measures,the generalized tangential technique(GTT)and equivalent Mohr-Coulomb parameters method(EMM),are incorporated into the analysis for comparison.Surprisingly,the parametric study indicates a significant improvement in support pressure by up to 13%compared with the GTT,and as expected,the stability of the tunnel face is greatly influenced by the rock strength parameters.The stress distribution on the rupture surface is calculated to gain an intuitive understanding of the failure at the limit state.Although the limit analysis is incapable of calculating the true stress distribution in rock masses,a rough approximation of the stress vector on the rupture surface is permitted.In the end,sets of normalized face pressure are provided in the form of charts for a quick assessment of face stability in rock masses.
文摘Aiming at the problem that existing models in aspect-level sentiment analysis cannot fully and effectively utilize sentence semantic and syntactic structure information, this paper proposes a graph neural network-based aspect-level sentiment classification model. Self-attention, aspectual word multi-head attention and dependent syntactic relations are fused and the node representations are enhanced with graph convolutional networks to enable the model to fully learn the global semantic and syntactic structural information of sentences. Experimental results show that the model performs well on three public benchmark datasets Rest14, Lap14, and Twitter, improving the accuracy of sentiment classification.
文摘The suitable cement concrete pavement for mountainous areas is a form of low-cost cement concrete pavement that uses unconventional graded stones in different proportions in ordinary concrete,allowing the concrete to fully contact the stones and form a stable and well-bonded slab with large particle stones.As large particle stones replace a certain volume of cement concrete,they have good economic performance and are a low-cost form of cement concrete pavement.This study researches the use of ANSYS tools to analyze the influence of geometric dimensions and material properties of rigid pavement structural layers on the mechanical properties of pavement structures.
基金supported by the National Natural Science Foundation of China(Grant Nos.52105035 and 52075467)the Natural Science Foundation of Hebei Province of China(Grant No.E2021203109)+1 种基金the State Key Laboratory of Robotics and Systems(HIT)(Grant No.SKLRS-2021-KF-15)the Industrial Robot Control and Reliability Technology Innovation Center of Hebei Province(Grant No.JXKF2105).
文摘As the support mechanism of space-borne antennas,space deployable antenna mechanism belongs to complex multi-closed-loop coupling mechanism,configuration design and dynamic analysis are more difficult than general parallel mechanism.In this paper,an unequal-length scissors mechanism(ULSM)is proposed by changing the position of the internal rotational joint through a basic scissors mechanism.A scissors hoop-rib truss deployable antenna mechanism(SHRTDAM)is constructed by replacing the parabolic rib with the ULSM.Kinematic analysis of SHRTDAM is conducted,and the degree of freedom(DOF)of the whole antenna mechanism is analyzed based on screw theory,the result showed that it has only one DOF.Velocity and acceleration characteristics of SHRTDAM are obtained by the screw derivative and rotation transformation.Based on Lagrange equation,dynamic model of this mechanism is established,the torque required to drive the mechanism is simulated and verified by Adams and MATLAB software.In addition,a ground experiment prototype of 1.5-m diameter was fabricated and a deployment test is conducted,which demonstrated the mobility and deployment performance of the whole mechanism.The mechanism proposed in this paper can provide a good reference for the design and analysis of large aperture space deployable antennas.
基金supported by the Natural Science Foundation of China under Grant(No.52172099)the Provincial Joint Fund of Shaanxi(2021JLM-28).
文摘The large accumulation of coal gangue,a common industrial solid waste,causes severe environmental problems,and green development strategies are required to transform this waste into high-value-added products.In this study,low-cost ceramsites adsorbents were prepared from waste gangue,silt coal,and peanut shells and applied to remove the organic dye methylene blue from wastewater.We investigated the microstructure of ceramsites and the effects of the sintering atmosphere,sintering temperature,and solution pH on their adsorption performance.The ceramsites sintered at 800℃under a nitrogen atmosphere exhibited the largest three-dimensional-interconnected hierarchical porous structure among the prepared ceramsites;further,it exhibited the highest methylene blue adsorption performance,with an adsorption capacity of 0.954 mg·g^(−1),adsorption efficiency of over 95%,and adsorption equilibrium time of 1 h at a solution pH of 9.The removal efficiency remained greater than 75%after five adsorption cycles.The adsorption kinetics data were analyzed using various models,including the pseudosecond-order kinetic model and Langmuir equation,and the adsorption was attributed to electrostatic interactions between the dyes and ceramsites,n-interactions,and hydrogen bonds.The prepared coal gangue ceramsites exhibited excellent adsorption capacities,removal rates,and cyclic stabilities,demonstrating their promising application prospects for the comprehensive utilization of solid waste and for wastewater treatment.
文摘In today’s rapidly developing modern society,automobiles,as an important part of transportation and industrial fields,play a pivotal role.With the improvement of people’s living standards and the increase in traffic demand,the automobile manufacturing industry has been continuously developing and growing globally.However,to cope with increasingly fierce market competition and ever-changing consumer demands,the automobile manufacturing industry is also facing the challenges of improving production efficiency,reducing costs,and improving product quality.In this context,automation technology has gradually become a major trend in the automobile manufacturing industry.As an important support of modern industry,automation technology has shown great application potential in many fields.From industrial production to daily life,automation technology can be seen everywhere.In the field of manufacturing,especially in automobile manufacturing,the application of automation technology is getting more and more attention.Automated production lines,intelligent robots,and automated warehousing systems have all changed the face of automobile manufacturing to varying degrees,bringing companies higher efficiency,more stable quality,and greater competitive advantages.The application trend of this automation technology in various fields not only meets the needs of modern industry for efficient,precise,and sustainable development but also provides new ideas and paths for the future development of the automobile manufacturing industry.
文摘Ceramics are good alternative to metal as bearing couple materials because of their better wear resistance. A Finite Element(FE) study was performed to investigate the contact mechanics and stress distribution of Ceramic-on-Ceramic (COC) hip resurfacingprostheses. It was focused in particular on a parametric study to examine the effects of radial clearance, loading,alumina coating on the implants, bone quality, and fixation of cup-bone interface. It was found that a reduction in the radialclearance had the most significant effect on the predicted contact pressure distribution among all of the parameters considered inthis study. It was determined that there was a significant influence of non-metallic materials, such as the bone underneath thebearing components, on the predicted contact mechanics. Stress shielding within the bone tissue was found to be a major concernwhen regarding the use of ceramic as an alternative to metallic resurfacing prostheses. Therefore, using alumina implantswith a metal backing was found to be the best design for ceramic resurfacing prostheses in this study. The loading, bone quality,and acetabular cup fixation conditions were found to have only minor effects on the predicted contact pressure distribution alongthe bearing surfaces.
基金Nature Science Foundation of China under Grant no.50179034.
文摘In order to effectively cope with exponent increase of the complexity faced to the rock mechanics analysis problems and the large incompatibility existing between the information level required to model the rock mass and engineering and our obtainable information level at hand,the integrated approaches with intelligent characters are proposed. Many previous standard methods,such as precedent type analysis,rock classification,analytic method stress-based,basic numerical methods (BEM,FEM,DEM,hybrid),and their extended numerical methods (fully coupled) to be developed,can be selected respectively or integrated accordingly. It is alternative to develop basic/fully integrated system,and internet-based approaches. These novel methods can also be selected or integrated each other or with the standard methods to perform rock mechanics analysis. Some key techniques to develop these alternative methods are discussed. It may focus in future on developing fully integrated systems and internet-based approaches. Developing an environmental,virtual facility/space shall be firstly done for this collaborative research on internet.
基金Supported by State Key Laboratory of Robotics and Systems(HIT)(SKLRS-2010-ZD-04)Capital Medical Development Scientific Research Fund(20092098)
文摘A barrier-free wheelchair robot with a mechanism coupled by wheel and track is presen- ted in this paper. Using the wheelchair, the lower limb disabled persons could be more relaxed to take part in outdoor activities whether on flat ground or stairs and obstacles in the city. The wheel- track coupling mechanism is designed and the stability of the bodywork of the wheelchair robot on the stairs is analyzed. In order to obtain the stability of wheelchair robot when it climbs obstacles, centroid projection method is applied to analyze the static stability, stability margin is proposed to provide the stability under some dynamic forces, and the push rod rotation angle in terms of the guaranteed stability margin is given. Finally, the dynamic model of the wheelchair robot based on Lagrange equation is established, which can be a theoretical foundation for the wheelchair control system design.
基金The project supported by the National Natural Science Foundation of China (19891180(3))Hong Kong Research Grant Committee (DAG 96/97. EG15)
文摘The strain jump across the Austenite-Martensite (A-M) interface in single crystal Cu-14wt%Al-4.12wt%Ni Shape Memory Alloys (SMAs) under uniaxial tension was studied in this paper. A crystallographic-based mechanics analysis on the formation and microstructure of the interface was performed. By using the high sensitive Moiré interference technique, the full-field deformation patterns during the transformation process were successfully recorded. The orientation of the habit plane (A-M interface) and the magnitude of the shape strain were determined precisely from the Moiré fringe patterns. The theoretical predictions on the habit plane normal and the shape strain were compared with the measured results and good agreements were obtained.
基金supported by the Major State Basic Research Development Program of China(No. G19990328)the National Key Technologies R&D Program of China (No. 20050200069)+1 种基金the National Natural Science Foundation of China (Nos. 10771124 and 10372052)the Ph. D. Programs Foundation of Ministry of Eduction of China (No. 20030422647)
文摘We propose a modified upwind finite difference fractional step scheme for the computational fluid mechanics simulations of a three-dimensional photoelectric semiconductor detector. We obtain the optimal l^2-norm error estimates by using the techniques including the calculus of variations, the energy methods, the induction hypothesis, and a priori estimates. The proposed scheme is successfully applied to the simulation of the photoelectric semiconductor detectors.
文摘The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and modal analysis of rotor of a composite vertical axis wind turbine was conducted by using ANSYS software.The relevant contour sketch of stress and deformation was obtained.The analysis was made for static structural mechanics,modal analysis of rotor and the total deformation and vibration profile to evaluate the influence on the working capability of the rotor.The analysis results show that the various structure parameters lie in the safety range of structural mechanics in the relative standards.The analysis showing the design safe to operate the rotor of a vertical axis wind turbine.The methods used in this study can be used as a good reference for the structural mechanics′analysis of VAWTs.