Seismic prediction of cracks is of great significance in many disciplines,for which the rock physics model is indispensable.However,up to now,multitudinous analytical models focus primarily on the cracked rock with th...Seismic prediction of cracks is of great significance in many disciplines,for which the rock physics model is indispensable.However,up to now,multitudinous analytical models focus primarily on the cracked rock with the isotropic background,while the explicit model for the cracked rock with the anisotropic background is rarely investigated in spite of such case being often encountered in the earth.Hence,we first studied dependences of the crack opening displacement tensors on the crack dip angle in the coordinate systems formed by symmetry planes of the crack and the background anisotropy,respectively,by forty groups of numerical experiments.Based on the conclusion from the experiments,the analytical solution was derived for the effective elastic properties of the rock with the inclined penny-shaped cracks in the transversely isotropic background.Further,we comprehensively analyzed,according to the developed model,effects of the crack dip angle,background anisotropy,filling fluid and crack density on the effective elastic properties of the cracked rock.The analysis results indicate that the dip angle and background anisotropy can significantly either enhance or weaken the anisotropy degrees of the P-and SH-wave velocities,whereas they have relatively small effects on the SV-wave velocity anisotropy.Moreover,the filling fluid can increase the stiffness coefficients related to the compressional modulus by reducing crack compliance parameters,while its effects on shear coefficients depend on the crack dip angle.The increasing crack density reduces velocities of the dry rock,and decreasing rates of the velocities are affected by the crack dip angle.By comparing with exact numerical results and experimental data,it was demonstrated that the proposed model can achieve high-precision estimations of stiffness coefficients.Moreover,the assumption of the weakly anisotropic background results in the consistency between the proposed model and Hudson's published theory for the orthorhombic rock.展开更多
The problem of shield tunnel uplift is a common issue in tunnel construction.Due to the decrease in shear stiffness at the joints between the rings,uplift is typically observed as bending and dislocation deformation a...The problem of shield tunnel uplift is a common issue in tunnel construction.Due to the decrease in shear stiffness at the joints between the rings,uplift is typically observed as bending and dislocation deformation at these joints.Existing modeling methods typically rely on the Euler-Bernoulli beam theory,only considering the bending effect while disregarding shear deformation.Furthermore,the constraints on the shield tail are often neglected in existing models.In this study,an improved theoretical model of tunnel floating is proposed.The constraint effect of the shield machine shell on the tunnel structure is considered using the structural forms of two finite long beams and one semi-infinite long beam.Furthermore,the Timoshenko beam theory is adopted,providing a more accurate description of tunnel deformation,including both the bending effect and shear deformation,than existing models.Meanwhile,the buoyancy force and stratum resistance are calculated in a nonlinear manner.A reliable method for calculating the shear stiffness correction factor is proposed to better determination of the calculation parameters.The proposed theoretical model is validated through five cases using sitemonitored data.Its applicability and effectiveness are demonstrated.Furthermore,the influences of soil type,buried depth,and buoyancy force on the three key indicators of tunnel floating(i.e.the maximum uplift magnitude,the ring position with the fastest uplift race,and the ring position with the maximum uplift magnitude)are analyzed.The results indicate that the proposed model can provide a better understanding of the floating characteristics of the tunnel structure during construction.展开更多
Based on the Landau-Lifshitz-Gilbert(LLG)equation,the precession relaxation of magnetization is studied when the external field H is parallel to the uniaxial anisotropic field H_(k).The evolution of three-component ma...Based on the Landau-Lifshitz-Gilbert(LLG)equation,the precession relaxation of magnetization is studied when the external field H is parallel to the uniaxial anisotropic field H_(k).The evolution of three-component magnetization is solved analytically under the condition of H=nH_(k)(n=3,1 and 0).It is found that with an increase of H or a decrease of the initial polar angle of magnetization,the relaxation time decreases and the angular frequency of magnetization increases.For comparison,the analytical solution for H_(k)=0 is also given.When the magnetization becomes stable,the angular frequency is proportional to the total effective field acting on the magnetization.The analytical solutions are not only conducive to the understanding of the precession relaxation of magnetization,but also can be used as a standard model to test the numerical calculation of LLG equation.展开更多
This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectio...This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB.展开更多
It is always a challenge for a model developer to verify a three-dimensional hydrodynamic model, especially for the baroclinic term over variable topography, due to a lack of observational data sets or suitable analyt...It is always a challenge for a model developer to verify a three-dimensional hydrodynamic model, especially for the baroclinic term over variable topography, due to a lack of observational data sets or suitable analytical solutions. In this paper, exact solutions for the periodic forcing by surface heat flux and wind stress are given by solving the linearized equations of motion neglecting the rotation, advection and horizontal diffusion terms. The temperature at the bottom is set to a prescribed periodic value and a slip condition on flow is enforced at the bottom. The geometry of the quarter annulus, which has been extensively studied for two- and three-dimensional analytical solutions of unstratified water bodies, is used with a general power law variation of the bottom slope in the radial direction and is constant in the azimuthal direction. The analytical solutions are derived in a cylindrical coordinate system, which describes the three-dimensional fluid field in a Cartesian coordinate system. The results presented in this paper should provide a foundation for studying and verifying the baroclinic term over a varied topography in a three-dimensional numerical model.展开更多
A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions o...A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.展开更多
This paper investigates the validity and shortcomings of the existing analytical solution for the ultimate bearing capacity of a pile embedded in a rock mass using the modified HoekeBrown failure criterion.Although th...This paper investigates the validity and shortcomings of the existing analytical solution for the ultimate bearing capacity of a pile embedded in a rock mass using the modified HoekeBrown failure criterion.Although this criterion is considered a reference value for empirical and numerical calculations,some limitations of its basic simplifications have not been clarified yet.This research compares the analytical results obtained from the novel discontinuity layout optimization(DLO)method and the numerical solutions from the finite difference method(FDM).The limitations of the analytical solution are considered by comparing different DLO failure modes,thus allowing for the first time a critical evaluation of its scope and conditioning for implementation.Errors of up to 40%in the bearing capacity and unrealistic failure modes are the main issues in the analytical solution.The main aspects of the DLO method are also analyzed with an emphasis on the linearization of the rock failure criterion and the accuracy resulting from the discretization size.The analysis demonstrates DLO as a very efficient and accurate tool to address the pile tip bearing capacity,presenting considerable advantages over other methods.展开更多
Multiple objectives to be optimized simultaneously are prevalent in real-life problems. This paper develops a new Pareto Method for bi-objective optimization which yields analytical solutions. The Pareto optimal front...Multiple objectives to be optimized simultaneously are prevalent in real-life problems. This paper develops a new Pareto Method for bi-objective optimization which yields analytical solutions. The Pareto optimal front is obtained in closed-form, enabling the derivation of various solutions in a convenient and efficient way. The advantage of analytical solution is the possibility of deriving accurate, exact and well-understood solutions, which is especially useful for policy analysis. An extension of the method to include multiple objectives is provided with the objectives being classified into two types. Such an extension expands the applicability of the developed techniques.展开更多
To find analytical solutions of nonlinear systems for locating the acoustic emission/microseismic(AE/MS) source without knowing the wave velocity of structures, the sensor location coordinates were simplified as a c...To find analytical solutions of nonlinear systems for locating the acoustic emission/microseismic(AE/MS) source without knowing the wave velocity of structures, the sensor location coordinates were simplified as a cuboid monitoring network. Different locations of sensors on upper and lower surfaces were considered and used to establish nonlinear equations. Based on the proposed functions of time difference of arrivals, the analytical solutions were obtained using five sensors under three networks. The proposed analytical solutions were validated using authentic data of numerical tests and experiments. The results show that located results are consistent with authentic data, and the outstanding characteristics of the new solution are that the solved process is not influenced by the wave velocity knowledge and iterated algorithms.展开更多
To find the analytical solution of the acoustic emission/microseismic(AE/MS) source location coordinates, the sensor location coordinates were optimized and simplified. A cube monitoring network of sensor location was...To find the analytical solution of the acoustic emission/microseismic(AE/MS) source location coordinates, the sensor location coordinates were optimized and simplified. A cube monitoring network of sensor location was selected, and the AE/MS source localization equations were established. A location method with P-wave velocity by analytical solutions (P-VAS) was obtained with these equations. The virtual location tests show that the relocation results of analytical method are fully consistent with the actual coordinates for events both inside and outside the monitoring network; whereas the location error of traditional time difference method is between 0.01 and 0.03 m for events inside the sensor array, and the location errors are larger, which is up to 1080986 m for events outside the sensor array. The broken pencil location tests were carried out in the cross section of 100 mm×98 mm, 350 mm-length granite rock specimen using five AE sensors. Five AE sources were relocated with the conventional method and the P-VAS method. For the four events outside monitoring network, the positioning accuracy by P-VAS method is higher than that by the traditional method, and the location accuracy of the larger one can be increased by 17.61 mm. The results of both virtual and broken pencil location tests show that the proposed analytical solution is effective to improve the positioning accuracy. It can locate the coordinates of AE/MS source only using simple four arithmetic operations, without determining the fitting initial value and iterative calculation, which can be solved by a conventional calculator or Microsoft Excel.展开更多
Using the variable transformation method,the formulae of the axial symmetrical wall temperature distribution during steady heat conduction of a hollow cylinder are derived in this paper.The wall temperature distributi...Using the variable transformation method,the formulae of the axial symmetrical wall temperature distribution during steady heat conduction of a hollow cylinder are derived in this paper.The wall temperature distribution and the wall heat flux distribution in both axial and radial direction can be calculated by the temperature distribution of the liquid medium both inside and outside the cylinder with temperature changing in axial direction.The calculation results are almost consistent with the experience results.The applicative condition of the formulae in this paper consists with most of practice.They can be applied to the engineering calculation of the steady heat conduction.The calculation is simple and accurate.展开更多
The study of transient heat conduction in multilayered slabs is widely used in various engineering fields. In this paper, the transient heat conduction in multilayered slabs with general boundary conditions and arbitr...The study of transient heat conduction in multilayered slabs is widely used in various engineering fields. In this paper, the transient heat conduction in multilayered slabs with general boundary conditions and arbitrary heat generations is analysed. The boundary conditions are general and include various combinations of Dirichlet, Neumann or Robin boundary conditions at either surface. Moreover, arbitrary heat generations in the slabs are taken into account. The solutions are derived by basic methods, including the superposition method, separation variable method and orthogonal expansion method. The simplified double-layered analytical solution is validated by a numerical method and applied to predicting the temporal and spatial distribution of the temperature inside a landfill. It indicates the ability of the proposed analytical solutions for solving the wide range of applied transient heat conduction problems.展开更多
The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly dis-tributed load is investigated,with material parameters being arbitrary functions of the thickness coordin...The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly dis-tributed load is investigated,with material parameters being arbitrary functions of the thickness coordinate. The heat conduction problem is treated as a 1D problem through the thickness. Based on the elementary formulations for plane stress problem,the stress function is assumed to be in the form of polynomial of the longitudinal coordinate variable,from which the stresses can be derived. The stress function is then determined completely with the compatibility equation and boundary conditions. A practical example is presented to show the application of the method.展开更多
Based on Huang's accurate tri-sectional nonlin- ear kinematic equation (1997), a dimensionless simplified mathematical model for nonlinear flow in one-dimensional semi-infinite long porous media with low permeabili...Based on Huang's accurate tri-sectional nonlin- ear kinematic equation (1997), a dimensionless simplified mathematical model for nonlinear flow in one-dimensional semi-infinite long porous media with low permeability is presented for the case of a constant flow rate on the inner boundary. This model contains double moving boundaries, including an internal moving boundary and an external mov- ing boundary, which are different from the classical Stefan problem in heat conduction: The velocity of the external moving boundary is proportional to the second derivative of the unknown pressure function with respect to the distance parameter on this boundary. Through a similarity transfor- mation, the nonlinear partial differential equation (PDE) sys- tem is transformed into a linear PDE system. Then an ana- lytical solution is obtained for the dimensionless simplified mathematical model. This solution can be used for strictly checking the validity of numerical methods in solving such nonlinear mathematical models for flows in low-permeable porous media for petroleum engineering applications. Finally, through plotted comparison curves from the exact an- alytical solution, the sensitive effects of three characteristic parameters are discussed. It is concluded that with a decrease in the dimensionless critical pressure gradient, the sensi- tive effects of the dimensionless variable on the dimension- less pressure distribution and dimensionless pressure gradi- ent distribution become more serious; with an increase in the dimensionless pseudo threshold pressure gradient, the sensi- tive effects of the dimensionless variable become more serious; the dimensionless threshold pressure gradient (TPG) has a great effect on the external moving boundary but has little effect on the internal moving boundary.展开更多
The theory of an eddy viscosity model is applied to the study of the flow in a compound channel which is partially vegetated. The governing equation is constituted by analyzing the longitudinal forces acting on the un...The theory of an eddy viscosity model is applied to the study of the flow in a compound channel which is partially vegetated. The governing equation is constituted by analyzing the longitudinal forces acting on the unit volume where the effect of the vegetation on the flow is considered as a drag force item, The compound channel is divided into 3 sub-regions in the transverse direction, and the coefficients in every region's differential equations were solved simultaneously. Thus, the analytical solution of the transverse distribution of the depth-averaged velocity for uniform flow in a partially vegetated compound channel was obtained. The results can be used to predict the transverse distribution of bed shear stress, which has an important effect on the transportation of sediment. By comparing the analytical results with the measured data, the analytical solution in this paper is shown to be sufficiently accurate to predict most hydraulic features for engineering design purposes.展开更多
This paper presents an analytical solution of the one-dimensional consolidation in unsaturated soil with a finite thickness under vertical loading and confinements in the lateral directions. The boundary contains the ...This paper presents an analytical solution of the one-dimensional consolidation in unsaturated soil with a finite thickness under vertical loading and confinements in the lateral directions. The boundary contains the top surface permeable to water and air and the bottom impermeable to water and air. The analytical solution is for Fredlund's one-dimensional consolidation equation in unsaturated soils. The transfer relationship between the state vectors at top surface and any depth is obtained by using the Laplace transform and Cayley-Hamilton mathematical methods to the governing equations of water and air, Darcy's law and Fick's law. Excess pore-air pressure, excess pore-water pressure and settlement in the Laplace-transformed domain are obtained by using the Laplace transform with the initial conditions and boundary conditions. By performing inverse Laplace transforms, the analytical solutions are obtained in the time domain. A typical example illustrates the consolidation characteristics of unsaturated soil from an- alytical results. Finally, comparisons between the analytical solutions and results of the finite difference method indicate that the analytical solution is correct.展开更多
Based on the assumption that solute transport in a semi-infinite soil columnor in a field soil profile can be described by the boundary-layer method, an analytical solution ispresented for the advance of a solute fron...Based on the assumption that solute transport in a semi-infinite soil columnor in a field soil profile can be described by the boundary-layer method, an analytical solution ispresented for the advance of a solute front with time. The traditional convection-dispersionequation (CDE) subjected to two boundary conditions: 1) at the soil surface (or inlet boundary) and2) at the solute front, was solved using a Laplace transformation. A comparison of residentconcentrations using a boundary-layer method and an exact solution (in a semi-infinite-domain)showed that both were in good agreement within the range between the two boundaries. This led to anew method for estimating solute transport parameters in soils, requiring only observation ofadvance of the solute front with time. This may be corroborated visually using a tracer solutionwith marking-dye or measured utilizing time domain reflectometry (TDR). This method is applicable toboth laboratory soil columns and field soils. Thus, it could be a step forward for modeling solutetransport in field soils and for better understanding of the transport processes in soils.展开更多
An analytical solution for scattering of plane P waves by a semi-cylindrical hill was derived by using the wave function expansion method, and convergence of the solution and accuracy of truncation were verified. The ...An analytical solution for scattering of plane P waves by a semi-cylindrical hill was derived by using the wave function expansion method, and convergence of the solution and accuracy of truncation were verified. The effect of incident frequency and incident angle on the surface motion of the hill was discussed, and it was shown that a hill greatly amplifies incident plane P waves, and maximum horizontal displacement amplitudes appear mostly at the inclined incidence of waves, which are located at the half-space; and maximum vertical displacement amplitudes emerge mostly at the vertical incidence of waves, which are situated at the hill.展开更多
Following exploitation of a coal seam, the final stress field is the sum of in situ stress field and an excavation stress field. Based on this feature, we firstly established a mechanics analytical model of the mining...Following exploitation of a coal seam, the final stress field is the sum of in situ stress field and an excavation stress field. Based on this feature, we firstly established a mechanics analytical model of the mining floor strata. Then the study applied Fourier integral transform to solve a biharmonic equation,obtaining the analytical solution of the stress and displacement of the mining floor. Additionally, this investigation used the Mohr–Coulomb yield criterion to determine the plastic failure depth of the floor strata. The calculation process showed that the plastic failure depth of the floor and floor heave are related to the mining width, burial depth and physical–mechanical properties. The results from an example show that the curve of the plastic failure depth of the mining floor is characterized by a funnel shape and the maximum failure depth generates in the middle of mining floor; and that the maximum and minimum principal stresses change distinctly in the shallow layer and tend to a fixed value with an increase in depth. Based on the displacement results, the maximum floor heave appears in the middle of the stope and its value is 0.107 m. This will provide a basis for floor control. Lastly, we have verified the analytical results using FLAC3 Dto simulate floor excavation and find that there is some deviation between the two results, but their overall tendency is consistent which illustrates that the analysis method can well solve the stress and displacement of the floor.展开更多
This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation.Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish d...This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation.Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish dual variables and dual equations in the symplectic space.The operator matrix of the equation set is proven to be a Hamilton operator matrix.Separation of variables and eigenfunction expansion creates a basis for analyzing the bending of rectangular orthotropic plates on Winkler elastic foundation and obtaining solutions for plates having any boundary condition.There is discussion of symplectic eigenvalue problems of orthotropic plates under two typical boundary conditions,with opposite sides simply supported and opposite sides clamped.Transcendental equations of eigenvalues and symplectic eigenvectors in analytical form given.Analytical solutions using two examples are presented to show the use of the new methods described in this paper.To verify the accuracy and convergence,a fully simply supported plate that is fully and simply supported under uniformly distributed load is used to compare the classical Navier method,the Levy method and the new method.Results show that the new technique has good accuracy and better convergence speed than other methods,especially in relation to internal forces.A fully clamped rectangular plate on Winkler foundation is solved to validate application of the new methods,with solutions compared to those produced by the Galerkin method.展开更多
基金We would like to acknowledge all the reviewers and editors and the sponsorship of National Natural Science Foundation of China(42030103)the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(2021QNLM020001-6)the Laoshan National Laboratory of Science and Technology Foundation(LSKJ202203400).
文摘Seismic prediction of cracks is of great significance in many disciplines,for which the rock physics model is indispensable.However,up to now,multitudinous analytical models focus primarily on the cracked rock with the isotropic background,while the explicit model for the cracked rock with the anisotropic background is rarely investigated in spite of such case being often encountered in the earth.Hence,we first studied dependences of the crack opening displacement tensors on the crack dip angle in the coordinate systems formed by symmetry planes of the crack and the background anisotropy,respectively,by forty groups of numerical experiments.Based on the conclusion from the experiments,the analytical solution was derived for the effective elastic properties of the rock with the inclined penny-shaped cracks in the transversely isotropic background.Further,we comprehensively analyzed,according to the developed model,effects of the crack dip angle,background anisotropy,filling fluid and crack density on the effective elastic properties of the cracked rock.The analysis results indicate that the dip angle and background anisotropy can significantly either enhance or weaken the anisotropy degrees of the P-and SH-wave velocities,whereas they have relatively small effects on the SV-wave velocity anisotropy.Moreover,the filling fluid can increase the stiffness coefficients related to the compressional modulus by reducing crack compliance parameters,while its effects on shear coefficients depend on the crack dip angle.The increasing crack density reduces velocities of the dry rock,and decreasing rates of the velocities are affected by the crack dip angle.By comparing with exact numerical results and experimental data,it was demonstrated that the proposed model can achieve high-precision estimations of stiffness coefficients.Moreover,the assumption of the weakly anisotropic background results in the consistency between the proposed model and Hudson's published theory for the orthorhombic rock.
基金the National Natural Science Foundation of China (Grant Nos.52379111,51979270 and 52208380).
文摘The problem of shield tunnel uplift is a common issue in tunnel construction.Due to the decrease in shear stiffness at the joints between the rings,uplift is typically observed as bending and dislocation deformation at these joints.Existing modeling methods typically rely on the Euler-Bernoulli beam theory,only considering the bending effect while disregarding shear deformation.Furthermore,the constraints on the shield tail are often neglected in existing models.In this study,an improved theoretical model of tunnel floating is proposed.The constraint effect of the shield machine shell on the tunnel structure is considered using the structural forms of two finite long beams and one semi-infinite long beam.Furthermore,the Timoshenko beam theory is adopted,providing a more accurate description of tunnel deformation,including both the bending effect and shear deformation,than existing models.Meanwhile,the buoyancy force and stratum resistance are calculated in a nonlinear manner.A reliable method for calculating the shear stiffness correction factor is proposed to better determination of the calculation parameters.The proposed theoretical model is validated through five cases using sitemonitored data.Its applicability and effectiveness are demonstrated.Furthermore,the influences of soil type,buried depth,and buoyancy force on the three key indicators of tunnel floating(i.e.the maximum uplift magnitude,the ring position with the fastest uplift race,and the ring position with the maximum uplift magnitude)are analyzed.The results indicate that the proposed model can provide a better understanding of the floating characteristics of the tunnel structure during construction.
基金Project supported by the National Key R&D Program of China (Grant No.2021YFB3501300)the National Natural Science Foundation of China (Grant Nos.91963201 and 12174163)the 111 Project (Grant No.B20063)。
文摘Based on the Landau-Lifshitz-Gilbert(LLG)equation,the precession relaxation of magnetization is studied when the external field H is parallel to the uniaxial anisotropic field H_(k).The evolution of three-component magnetization is solved analytically under the condition of H=nH_(k)(n=3,1 and 0).It is found that with an increase of H or a decrease of the initial polar angle of magnetization,the relaxation time decreases and the angular frequency of magnetization increases.For comparison,the analytical solution for H_(k)=0 is also given.When the magnetization becomes stable,the angular frequency is proportional to the total effective field acting on the magnetization.The analytical solutions are not only conducive to the understanding of the precession relaxation of magnetization,but also can be used as a standard model to test the numerical calculation of LLG equation.
文摘This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB.
文摘It is always a challenge for a model developer to verify a three-dimensional hydrodynamic model, especially for the baroclinic term over variable topography, due to a lack of observational data sets or suitable analytical solutions. In this paper, exact solutions for the periodic forcing by surface heat flux and wind stress are given by solving the linearized equations of motion neglecting the rotation, advection and horizontal diffusion terms. The temperature at the bottom is set to a prescribed periodic value and a slip condition on flow is enforced at the bottom. The geometry of the quarter annulus, which has been extensively studied for two- and three-dimensional analytical solutions of unstratified water bodies, is used with a general power law variation of the bottom slope in the radial direction and is constant in the azimuthal direction. The analytical solutions are derived in a cylindrical coordinate system, which describes the three-dimensional fluid field in a Cartesian coordinate system. The results presented in this paper should provide a foundation for studying and verifying the baroclinic term over a varied topography in a three-dimensional numerical model.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12261064 and 11861048)the Natural Science Foundation of Inner Mongolia,China (Grant Nos.2021MS01004 and 2022QN01008)the High-level Talents Scientific Research Start-up Foundation of Inner Mongolia University (Grant No.10000-21311201/165)。
文摘A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.
文摘This paper investigates the validity and shortcomings of the existing analytical solution for the ultimate bearing capacity of a pile embedded in a rock mass using the modified HoekeBrown failure criterion.Although this criterion is considered a reference value for empirical and numerical calculations,some limitations of its basic simplifications have not been clarified yet.This research compares the analytical results obtained from the novel discontinuity layout optimization(DLO)method and the numerical solutions from the finite difference method(FDM).The limitations of the analytical solution are considered by comparing different DLO failure modes,thus allowing for the first time a critical evaluation of its scope and conditioning for implementation.Errors of up to 40%in the bearing capacity and unrealistic failure modes are the main issues in the analytical solution.The main aspects of the DLO method are also analyzed with an emphasis on the linearization of the rock failure criterion and the accuracy resulting from the discretization size.The analysis demonstrates DLO as a very efficient and accurate tool to address the pile tip bearing capacity,presenting considerable advantages over other methods.
文摘Multiple objectives to be optimized simultaneously are prevalent in real-life problems. This paper develops a new Pareto Method for bi-objective optimization which yields analytical solutions. The Pareto optimal front is obtained in closed-form, enabling the derivation of various solutions in a convenient and efficient way. The advantage of analytical solution is the possibility of deriving accurate, exact and well-understood solutions, which is especially useful for policy analysis. An extension of the method to include multiple objectives is provided with the objectives being classified into two types. Such an extension expands the applicability of the developed techniques.
基金Projects(11447242,41272304,51209236,51274254)supported by the National Natural Science Foundation of ChinaProject(2015CB060200)supported by the National Basic Research Program of China
文摘To find analytical solutions of nonlinear systems for locating the acoustic emission/microseismic(AE/MS) source without knowing the wave velocity of structures, the sensor location coordinates were simplified as a cuboid monitoring network. Different locations of sensors on upper and lower surfaces were considered and used to establish nonlinear equations. Based on the proposed functions of time difference of arrivals, the analytical solutions were obtained using five sensors under three networks. The proposed analytical solutions were validated using authentic data of numerical tests and experiments. The results show that located results are consistent with authentic data, and the outstanding characteristics of the new solution are that the solved process is not influenced by the wave velocity knowledge and iterated algorithms.
基金Project (10872218) supported by the National Natural Science Foundation of ChinaProject (2010CB732004) supported by the National Basic Research Program of China+1 种基金Project (kjdb2010-6) supported by Doctoral Candidate Innovation Research Support Program of Science & Technology ReviewProject (201105) supported by Scholarship Award for Excellent Doctoral Student of Ministry of Education of China
文摘To find the analytical solution of the acoustic emission/microseismic(AE/MS) source location coordinates, the sensor location coordinates were optimized and simplified. A cube monitoring network of sensor location was selected, and the AE/MS source localization equations were established. A location method with P-wave velocity by analytical solutions (P-VAS) was obtained with these equations. The virtual location tests show that the relocation results of analytical method are fully consistent with the actual coordinates for events both inside and outside the monitoring network; whereas the location error of traditional time difference method is between 0.01 and 0.03 m for events inside the sensor array, and the location errors are larger, which is up to 1080986 m for events outside the sensor array. The broken pencil location tests were carried out in the cross section of 100 mm×98 mm, 350 mm-length granite rock specimen using five AE sensors. Five AE sources were relocated with the conventional method and the P-VAS method. For the four events outside monitoring network, the positioning accuracy by P-VAS method is higher than that by the traditional method, and the location accuracy of the larger one can be increased by 17.61 mm. The results of both virtual and broken pencil location tests show that the proposed analytical solution is effective to improve the positioning accuracy. It can locate the coordinates of AE/MS source only using simple four arithmetic operations, without determining the fitting initial value and iterative calculation, which can be solved by a conventional calculator or Microsoft Excel.
文摘Using the variable transformation method,the formulae of the axial symmetrical wall temperature distribution during steady heat conduction of a hollow cylinder are derived in this paper.The wall temperature distribution and the wall heat flux distribution in both axial and radial direction can be calculated by the temperature distribution of the liquid medium both inside and outside the cylinder with temperature changing in axial direction.The calculation results are almost consistent with the experience results.The applicative condition of the formulae in this paper consists with most of practice.They can be applied to the engineering calculation of the steady heat conduction.The calculation is simple and accurate.
基金Projects(41530637,41877222,41702290)supported by the National Natural Science Foundation of China
文摘The study of transient heat conduction in multilayered slabs is widely used in various engineering fields. In this paper, the transient heat conduction in multilayered slabs with general boundary conditions and arbitrary heat generations is analysed. The boundary conditions are general and include various combinations of Dirichlet, Neumann or Robin boundary conditions at either surface. Moreover, arbitrary heat generations in the slabs are taken into account. The solutions are derived by basic methods, including the superposition method, separation variable method and orthogonal expansion method. The simplified double-layered analytical solution is validated by a numerical method and applied to predicting the temporal and spatial distribution of the temperature inside a landfill. It indicates the ability of the proposed analytical solutions for solving the wide range of applied transient heat conduction problems.
基金Project supported by the National Natural Science Foundation of China (Nos. 10472102 and 1043203)the Foundation of Ningbo University (No. 2005014), China
文摘The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly dis-tributed load is investigated,with material parameters being arbitrary functions of the thickness coordinate. The heat conduction problem is treated as a 1D problem through the thickness. Based on the elementary formulations for plane stress problem,the stress function is assumed to be in the form of polynomial of the longitudinal coordinate variable,from which the stresses can be derived. The stress function is then determined completely with the compatibility equation and boundary conditions. A practical example is presented to show the application of the method.
基金supported by the National Natural Science Foundation of China(11102237)Program for Changjiang Scholars and Innovative Research Team in University(IRT1294)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20110133120012)China Scholarship Council(CSC)
文摘Based on Huang's accurate tri-sectional nonlin- ear kinematic equation (1997), a dimensionless simplified mathematical model for nonlinear flow in one-dimensional semi-infinite long porous media with low permeability is presented for the case of a constant flow rate on the inner boundary. This model contains double moving boundaries, including an internal moving boundary and an external mov- ing boundary, which are different from the classical Stefan problem in heat conduction: The velocity of the external moving boundary is proportional to the second derivative of the unknown pressure function with respect to the distance parameter on this boundary. Through a similarity transfor- mation, the nonlinear partial differential equation (PDE) sys- tem is transformed into a linear PDE system. Then an ana- lytical solution is obtained for the dimensionless simplified mathematical model. This solution can be used for strictly checking the validity of numerical methods in solving such nonlinear mathematical models for flows in low-permeable porous media for petroleum engineering applications. Finally, through plotted comparison curves from the exact an- alytical solution, the sensitive effects of three characteristic parameters are discussed. It is concluded that with a decrease in the dimensionless critical pressure gradient, the sensi- tive effects of the dimensionless variable on the dimension- less pressure distribution and dimensionless pressure gradi- ent distribution become more serious; with an increase in the dimensionless pseudo threshold pressure gradient, the sensi- tive effects of the dimensionless variable become more serious; the dimensionless threshold pressure gradient (TPG) has a great effect on the external moving boundary but has little effect on the internal moving boundary.
基金the National Natural Science Foundation of China(Nos.50679061,50709025and50749031)
文摘The theory of an eddy viscosity model is applied to the study of the flow in a compound channel which is partially vegetated. The governing equation is constituted by analyzing the longitudinal forces acting on the unit volume where the effect of the vegetation on the flow is considered as a drag force item, The compound channel is divided into 3 sub-regions in the transverse direction, and the coefficients in every region's differential equations were solved simultaneously. Thus, the analytical solution of the transverse distribution of the depth-averaged velocity for uniform flow in a partially vegetated compound channel was obtained. The results can be used to predict the transverse distribution of bed shear stress, which has an important effect on the transportation of sediment. By comparing the analytical results with the measured data, the analytical solution in this paper is shown to be sufficiently accurate to predict most hydraulic features for engineering design purposes.
文摘This paper presents an analytical solution of the one-dimensional consolidation in unsaturated soil with a finite thickness under vertical loading and confinements in the lateral directions. The boundary contains the top surface permeable to water and air and the bottom impermeable to water and air. The analytical solution is for Fredlund's one-dimensional consolidation equation in unsaturated soils. The transfer relationship between the state vectors at top surface and any depth is obtained by using the Laplace transform and Cayley-Hamilton mathematical methods to the governing equations of water and air, Darcy's law and Fick's law. Excess pore-air pressure, excess pore-water pressure and settlement in the Laplace-transformed domain are obtained by using the Laplace transform with the initial conditions and boundary conditions. By performing inverse Laplace transforms, the analytical solutions are obtained in the time domain. A typical example illustrates the consolidation characteristics of unsaturated soil from an- alytical results. Finally, comparisons between the analytical solutions and results of the finite difference method indicate that the analytical solution is correct.
基金Project supported by the National Key Basic Research Support Foundation of China (No. 2000018605) the National Natural Science Foundation of China (Nos. 40025106 and 40371060).
文摘Based on the assumption that solute transport in a semi-infinite soil columnor in a field soil profile can be described by the boundary-layer method, an analytical solution ispresented for the advance of a solute front with time. The traditional convection-dispersionequation (CDE) subjected to two boundary conditions: 1) at the soil surface (or inlet boundary) and2) at the solute front, was solved using a Laplace transformation. A comparison of residentconcentrations using a boundary-layer method and an exact solution (in a semi-infinite-domain)showed that both were in good agreement within the range between the two boundaries. This led to anew method for estimating solute transport parameters in soils, requiring only observation ofadvance of the solute front with time. This may be corroborated visually using a tracer solutionwith marking-dye or measured utilizing time domain reflectometry (TDR). This method is applicable toboth laboratory soil columns and field soils. Thus, it could be a step forward for modeling solutetransport in field soils and for better understanding of the transport processes in soils.
基金National Natural Science Foundation of China Under Grant No.50378063Excellent Young Teacher Program of Ministry of Education
文摘An analytical solution for scattering of plane P waves by a semi-cylindrical hill was derived by using the wave function expansion method, and convergence of the solution and accuracy of truncation were verified. The effect of incident frequency and incident angle on the surface motion of the hill was discussed, and it was shown that a hill greatly amplifies incident plane P waves, and maximum horizontal displacement amplitudes appear mostly at the inclined incidence of waves, which are located at the half-space; and maximum vertical displacement amplitudes emerge mostly at the vertical incidence of waves, which are situated at the hill.
基金the National Basic Research Program of China(No.2014CB046300)the National Natural Science Foundation of China(No.51174196)
文摘Following exploitation of a coal seam, the final stress field is the sum of in situ stress field and an excavation stress field. Based on this feature, we firstly established a mechanics analytical model of the mining floor strata. Then the study applied Fourier integral transform to solve a biharmonic equation,obtaining the analytical solution of the stress and displacement of the mining floor. Additionally, this investigation used the Mohr–Coulomb yield criterion to determine the plastic failure depth of the floor strata. The calculation process showed that the plastic failure depth of the floor and floor heave are related to the mining width, burial depth and physical–mechanical properties. The results from an example show that the curve of the plastic failure depth of the mining floor is characterized by a funnel shape and the maximum failure depth generates in the middle of mining floor; and that the maximum and minimum principal stresses change distinctly in the shallow layer and tend to a fixed value with an increase in depth. Based on the displacement results, the maximum floor heave appears in the middle of the stope and its value is 0.107 m. This will provide a basis for floor control. Lastly, we have verified the analytical results using FLAC3 Dto simulate floor excavation and find that there is some deviation between the two results, but their overall tendency is consistent which illustrates that the analysis method can well solve the stress and displacement of the floor.
基金supported by the National Natural Science Foundation of China (10772039 and 10632030)the National Basic Research Program of China (973 Program) (2010CB832704)
文摘This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation.Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish dual variables and dual equations in the symplectic space.The operator matrix of the equation set is proven to be a Hamilton operator matrix.Separation of variables and eigenfunction expansion creates a basis for analyzing the bending of rectangular orthotropic plates on Winkler elastic foundation and obtaining solutions for plates having any boundary condition.There is discussion of symplectic eigenvalue problems of orthotropic plates under two typical boundary conditions,with opposite sides simply supported and opposite sides clamped.Transcendental equations of eigenvalues and symplectic eigenvectors in analytical form given.Analytical solutions using two examples are presented to show the use of the new methods described in this paper.To verify the accuracy and convergence,a fully simply supported plate that is fully and simply supported under uniformly distributed load is used to compare the classical Navier method,the Levy method and the new method.Results show that the new technique has good accuracy and better convergence speed than other methods,especially in relation to internal forces.A fully clamped rectangular plate on Winkler foundation is solved to validate application of the new methods,with solutions compared to those produced by the Galerkin method.