Field investigation and laboratory analysis of 22 ancient paddy soils excavated at Chuodun site, Kunshan City, Jiangsu Province, China were carried out in 2003 to (1) understand the basic characteristics of ancient ...Field investigation and laboratory analysis of 22 ancient paddy soils excavated at Chuodun site, Kunshan City, Jiangsu Province, China were carried out in 2003 to (1) understand the basic characteristics of ancient paddy soils, (2) compare the difference of soil fertility between ancient paddy soils and recent paddy soils, and (3) inquire into mechanisms of the sustainability of paddy soil. The oldest paddy soils at Chuodun site can be dated back to Neolithic age, around 6000 aBP. These ancient fields were buried in about 1-m deep from the soil surface and their areas ranged from 0.32 to 12.9 m^2 with an average of 5.2 m^2. The paddy soils with 〉 5 000 pellets phytolith g^-1 soil were termed intensively cultivated paddy soils (ICPS) and those with 〈5000 pellets phytolith g^-1 soil were called weakly cultivated soils (WCPS). The contents of organic carbon (OC), and total N in the former were significantly higher than that in the latter. Ancient paddy soils had higher soil pH and C/N, total and available P, and lower contents of OC, DOC, total N, S, Cu, Fe, and available K, S, Fe, Mn, and Cu compared with recent paddy soils, which were attributed to application of chemical and manure fertilizers, pollution and acidification in recent paddy soils. The variation coefficients of OC and other nutrients in ancient paddy soils with higher PI were greater than that in ancient paddy soils with low PI, which indicated that human activities had a great impact on the spatial variability of soil nutrients. The contents of OC, total N, P and S in ancient paddy soils were higher than that in ancient moss of the same age, which indicated that planting rice during Majiabang culture period was beneficial to the accumulation of those life elements.展开更多
在长江河口两翼广泛分布第一硬土层(FHSL),研究其形成机制及工程地质特性对工程建设具有很好的指导意义。根据调查资料(钻孔935个,累计进尺42128 m)和试验资料,首次精确确认了长江河口北翼第一硬土层分布界线,研究了第一硬土层的形成年...在长江河口两翼广泛分布第一硬土层(FHSL),研究其形成机制及工程地质特性对工程建设具有很好的指导意义。根据调查资料(钻孔935个,累计进尺42128 m)和试验资料,首次精确确认了长江河口北翼第一硬土层分布界线,研究了第一硬土层的形成年代、粒度特征、地球化学特征、工程地质特性等。研究表明:第一硬土层形成年龄为20~11 ka B.P.(多个光释光和14C测年资料);硬土层含水率随深度的增加有增大的趋势,表明气候自下向上逐渐变凉和变干;第一硬土层的颗粒级配、粒度分布频率曲线、C-M沉积图等特征显示,第一硬土层主要由粉砂、极细砂和粘土粒级组成,样品的粒度频率曲线主要呈单峰分布,反映出物质沉积前所受搬运营力性质单一,土体颗粒沉积以均匀悬浮占绝对优势,沉积环境是一种相对稳定的低能环境。第一硬土层的发育受气候控制,大致可以分为3个阶段:第1阶段(20~15 ka B.P.)为沉积与成土交替作用时期,且以沉积作用为主,硬土层剖面厚度主要受该阶段控制,至末次盛冰期结束;第2阶段(15~11 ka B.P.)为暴露成土期,这时洪水不能形成越岸沉积,加积作用基本停止,硬土层厚度不再明显增加,已形成的第一硬土区域受到频繁变迁的分合河网的侵蚀切割,形成多条不规则古河道和台地,硬土层逐渐脱水成陆,经历了风化成壤的过程;第3阶段(11 ka B.P.至今)为淹埋期,随着全新世的到来,气候变暖,海平面不断上升,硬土层被其上覆的海相沉积层掩埋,成岩作用开始直到现今。土体易溶盐含量较高,为典型氯盐渍土类型,自下而上具有从低变高的趋势,为海相层覆盖硬土层以后成岩过程造成的。展开更多
[Objective] The paper was to analyze organic carbon content (SOC), granularity, total nitrogen content (TN), carbon-nitrogen ratio (C/N), calcium carbonate content (CaCO3) of 1cm soil profiles in returning for...[Objective] The paper was to analyze organic carbon content (SOC), granularity, total nitrogen content (TN), carbon-nitrogen ratio (C/N), calcium carbonate content (CaCO3) of 1cm soil profiles in returning forest in Zhifanggou watershed of Ansai County in Loess Plateau, so as to study the changes of physical and chemical properties in abnormal layer of soil reflected with granularity, as well as the physical and chemical responses of soil. [Method] Three quadrats with the size of 10 m×10 m were randomly selected in three sampling plots in Loess Plateau, three profiles in upper, middle and lower slope were excavated, and the samples were collected with interval of 10 cm; the surface layer with the depth of 0-10 cm was divided into two layers of 0-5 and 5-10 cm for sampling, respectively. Eleven samples were collected in each profile with a total of 99 samples. Its organic carbon content, granularity, total nitrogen content, carbon-nitrogen ratio and CaCO3 content were analyzed. [Result] The soil profiles in three sampling sites contained five characteristic layers, including a1, b1, b2, c1 and c2, the content of soil granule with particle size less than 0.02 mm decreased, and those with particle size 0.02 mm increased, the organic carbon content and C/N value (a1, b1, b2, c2) increased, but the increase trend of CaCO3 content was not obvious. [Conclusion] The study shows that the characteristic soil layer is commonly existed in loess region, especially the eroded loess region, which should be paid attention in the research fields of modern soil science and ecology.展开更多
基金The study was funded by the National Natural Science Foundation of China(40335047).We thank Professor Xu Zhihong,the Faculty of Environmental Science,Griffith University,Australia,for revising this manuscript.
文摘Field investigation and laboratory analysis of 22 ancient paddy soils excavated at Chuodun site, Kunshan City, Jiangsu Province, China were carried out in 2003 to (1) understand the basic characteristics of ancient paddy soils, (2) compare the difference of soil fertility between ancient paddy soils and recent paddy soils, and (3) inquire into mechanisms of the sustainability of paddy soil. The oldest paddy soils at Chuodun site can be dated back to Neolithic age, around 6000 aBP. These ancient fields were buried in about 1-m deep from the soil surface and their areas ranged from 0.32 to 12.9 m^2 with an average of 5.2 m^2. The paddy soils with 〉 5 000 pellets phytolith g^-1 soil were termed intensively cultivated paddy soils (ICPS) and those with 〈5000 pellets phytolith g^-1 soil were called weakly cultivated soils (WCPS). The contents of organic carbon (OC), and total N in the former were significantly higher than that in the latter. Ancient paddy soils had higher soil pH and C/N, total and available P, and lower contents of OC, DOC, total N, S, Cu, Fe, and available K, S, Fe, Mn, and Cu compared with recent paddy soils, which were attributed to application of chemical and manure fertilizers, pollution and acidification in recent paddy soils. The variation coefficients of OC and other nutrients in ancient paddy soils with higher PI were greater than that in ancient paddy soils with low PI, which indicated that human activities had a great impact on the spatial variability of soil nutrients. The contents of OC, total N, P and S in ancient paddy soils were higher than that in ancient moss of the same age, which indicated that planting rice during Majiabang culture period was beneficial to the accumulation of those life elements.
文摘在长江河口两翼广泛分布第一硬土层(FHSL),研究其形成机制及工程地质特性对工程建设具有很好的指导意义。根据调查资料(钻孔935个,累计进尺42128 m)和试验资料,首次精确确认了长江河口北翼第一硬土层分布界线,研究了第一硬土层的形成年代、粒度特征、地球化学特征、工程地质特性等。研究表明:第一硬土层形成年龄为20~11 ka B.P.(多个光释光和14C测年资料);硬土层含水率随深度的增加有增大的趋势,表明气候自下向上逐渐变凉和变干;第一硬土层的颗粒级配、粒度分布频率曲线、C-M沉积图等特征显示,第一硬土层主要由粉砂、极细砂和粘土粒级组成,样品的粒度频率曲线主要呈单峰分布,反映出物质沉积前所受搬运营力性质单一,土体颗粒沉积以均匀悬浮占绝对优势,沉积环境是一种相对稳定的低能环境。第一硬土层的发育受气候控制,大致可以分为3个阶段:第1阶段(20~15 ka B.P.)为沉积与成土交替作用时期,且以沉积作用为主,硬土层剖面厚度主要受该阶段控制,至末次盛冰期结束;第2阶段(15~11 ka B.P.)为暴露成土期,这时洪水不能形成越岸沉积,加积作用基本停止,硬土层厚度不再明显增加,已形成的第一硬土区域受到频繁变迁的分合河网的侵蚀切割,形成多条不规则古河道和台地,硬土层逐渐脱水成陆,经历了风化成壤的过程;第3阶段(11 ka B.P.至今)为淹埋期,随着全新世的到来,气候变暖,海平面不断上升,硬土层被其上覆的海相沉积层掩埋,成岩作用开始直到现今。土体易溶盐含量较高,为典型氯盐渍土类型,自下而上具有从低变高的趋势,为海相层覆盖硬土层以后成岩过程造成的。
基金Supported by Knowledge Innovation Project of Chinese Academy of Sciences(KZCX2-XB2-05-01)Research Program of Weinan Teachers College(07YKZ056)~~
文摘[Objective] The paper was to analyze organic carbon content (SOC), granularity, total nitrogen content (TN), carbon-nitrogen ratio (C/N), calcium carbonate content (CaCO3) of 1cm soil profiles in returning forest in Zhifanggou watershed of Ansai County in Loess Plateau, so as to study the changes of physical and chemical properties in abnormal layer of soil reflected with granularity, as well as the physical and chemical responses of soil. [Method] Three quadrats with the size of 10 m×10 m were randomly selected in three sampling plots in Loess Plateau, three profiles in upper, middle and lower slope were excavated, and the samples were collected with interval of 10 cm; the surface layer with the depth of 0-10 cm was divided into two layers of 0-5 and 5-10 cm for sampling, respectively. Eleven samples were collected in each profile with a total of 99 samples. Its organic carbon content, granularity, total nitrogen content, carbon-nitrogen ratio and CaCO3 content were analyzed. [Result] The soil profiles in three sampling sites contained five characteristic layers, including a1, b1, b2, c1 and c2, the content of soil granule with particle size less than 0.02 mm decreased, and those with particle size 0.02 mm increased, the organic carbon content and C/N value (a1, b1, b2, c2) increased, but the increase trend of CaCO3 content was not obvious. [Conclusion] The study shows that the characteristic soil layer is commonly existed in loess region, especially the eroded loess region, which should be paid attention in the research fields of modern soil science and ecology.