The principle of electric braking system is analyzed and an anti-skid braking system based on the slip rate control is proposed.The fuzzy-PID controller with parameter self-adjustment feature is designed for the anti-...The principle of electric braking system is analyzed and an anti-skid braking system based on the slip rate control is proposed.The fuzzy-PID controller with parameter self-adjustment feature is designed for the anti-skid braking system.The dynamic model of aircraft ground braking is established in the simulation environment of MATLAB/SIMULINK,and simulation results of dry runway and wet runway are presented.The results show that the fuzzy-PID controller with parameter self-adjustment feature for the electric anti-skid braking system keeps working in the state of stability and the brake efficiencies are increased to 93%on dry runway and 82%on wet runway respectively.展开更多
Theoretical analyses and experimental studies of the mechanisms of melting film formation are performed. The results show that frictional heating is the dominant mechanism because temperature behaves in the manner pr...Theoretical analyses and experimental studies of the mechanisms of melting film formation are performed. The results show that frictional heating is the dominant mechanism because temperature behaves in the manner predicted by the theory of frictional heating. A study of the active technology for anti-skid is also made. Conclusions indicate that adjusting tire pneumatic pressure can improve the control stability and the travelling safety of an ice-automobile.展开更多
Small stone asphalt mixture(SSAM) was designed by Bailey method and coarse aggregate voids-filling method.The optimum asphalt content was determined by Marshal test.Surface texture depth for SSAM with different void...Small stone asphalt mixture(SSAM) was designed by Bailey method and coarse aggregate voids-filling method.The optimum asphalt content was determined by Marshal test.Surface texture depth for SSAM with different voidage,and the BPN of SSAM and SMA before after wet track abrasion were measured.The experimental results indicate that the surface texture depth increases with the decreasing of asphalt aggregate ratio.The SSAM with the optimal asphalt content has a good skid resistance.BPN of asphalt mixture decreases with the increasing of wearing time,but the extent of reduction is different.The reduction rate of BPN for SSAM is smaller than that of SMA,indicating that SSAM has a good skid resistance attenuation capacity.Finally,the other properties of SSAM are also evaluated,showing that the splitting strength and modulus and SSAM are higher than those of SMA,and the other properties of SSAM,such as high-temperature performance and water stability can also satisfy the technical requirements.展开更多
In asymmetric conditions,the movement and loads of left/right wheels or front/back wheels of the aircraft with multi-wheel or four-wheel bogie landing gears are inconsistent.There are few open literatures related to a...In asymmetric conditions,the movement and loads of left/right wheels or front/back wheels of the aircraft with multi-wheel or four-wheel bogie landing gears are inconsistent.There are few open literatures related to anti-skid braking system for multi-wheels due to technology blockade.In China,the research on multi-channel control and non-equilibrium regulation has just started,and the design of multi-channel control system for anti-skid braking,the simulation of asymmetry taxiing under braking are not studied.In this paper,a dynamics model of ground movement for aircraft with four-wheel bogie landing gears is established for braking simulation, considering the six-degree-of-freedom aircraft body and the movement of bogies and wheels.A multi-channel anti-skid braking system is designed for the wheels of the main landing gears with four-wheel bogies.The eight wheels on left and right landing gears are divided into four groups,and each group is controlled via one channel.The cross protection and self-locked protection modules are added between different channels.A multi-channel anti-skid braking system with slip-ratio control or with slip-velocity control is established separately.Based on the aircraft dynamics model,aircraft braking to stop with anti-skid control on dry runway and on wet runway are simulated.The simulation results demonstrate that in asymmetric conditions,added with cross protection and self-locked protection modules,the slip-ratio-controlled braking system can automatically regulate brake torque to avoid deep slipping and correct aircraft course.The proposed research has reference value for improving brake control effect on wet runway.展开更多
In view of the increasing cement concrete pavement in China,the proportion of road non-slip surface layer is large,the winter slippery performance is insufficient and the later non-slip treatment is difficult. Through...In view of the increasing cement concrete pavement in China,the proportion of road non-slip surface layer is large,the winter slippery performance is insufficient and the later non-slip treatment is difficult. Through the concrete construction and post-application and development of the anti-skid sand in the road and bridge,the feasible anti-skid optimization measures are put forward.展开更多
基金Supported by the National Natural Science Foundation of China(51105197,51305198,11372129)the Project Funded by the Priority Academic Program Department of Jiangsu Higher Education Instructions
文摘The principle of electric braking system is analyzed and an anti-skid braking system based on the slip rate control is proposed.The fuzzy-PID controller with parameter self-adjustment feature is designed for the anti-skid braking system.The dynamic model of aircraft ground braking is established in the simulation environment of MATLAB/SIMULINK,and simulation results of dry runway and wet runway are presented.The results show that the fuzzy-PID controller with parameter self-adjustment feature for the electric anti-skid braking system keeps working in the state of stability and the brake efficiencies are increased to 93%on dry runway and 82%on wet runway respectively.
基金1This project is supported by National Natural Science Foundation of China ( No.59475033)
文摘Theoretical analyses and experimental studies of the mechanisms of melting film formation are performed. The results show that frictional heating is the dominant mechanism because temperature behaves in the manner predicted by the theory of frictional heating. A study of the active technology for anti-skid is also made. Conclusions indicate that adjusting tire pneumatic pressure can improve the control stability and the travelling safety of an ice-automobile.
基金Funded by the Program for Innovative Research Team in University (IRT1050)the Ministry of Transport Technology Project(201131982020)the Key Program of Shaanxi Natural Science Foundation for Basic Research Plan (2010JZ009)
文摘Small stone asphalt mixture(SSAM) was designed by Bailey method and coarse aggregate voids-filling method.The optimum asphalt content was determined by Marshal test.Surface texture depth for SSAM with different voidage,and the BPN of SSAM and SMA before after wet track abrasion were measured.The experimental results indicate that the surface texture depth increases with the decreasing of asphalt aggregate ratio.The SSAM with the optimal asphalt content has a good skid resistance.BPN of asphalt mixture decreases with the increasing of wearing time,but the extent of reduction is different.The reduction rate of BPN for SSAM is smaller than that of SMA,indicating that SSAM has a good skid resistance attenuation capacity.Finally,the other properties of SSAM are also evaluated,showing that the splitting strength and modulus and SSAM are higher than those of SMA,and the other properties of SSAM,such as high-temperature performance and water stability can also satisfy the technical requirements.
基金supported by National Natural Science Foundation of China (Grant No.51075203)Nanjing University of Aeronautics and Astronautics Research Funding(Grant No.NS2010033)
文摘In asymmetric conditions,the movement and loads of left/right wheels or front/back wheels of the aircraft with multi-wheel or four-wheel bogie landing gears are inconsistent.There are few open literatures related to anti-skid braking system for multi-wheels due to technology blockade.In China,the research on multi-channel control and non-equilibrium regulation has just started,and the design of multi-channel control system for anti-skid braking,the simulation of asymmetry taxiing under braking are not studied.In this paper,a dynamics model of ground movement for aircraft with four-wheel bogie landing gears is established for braking simulation, considering the six-degree-of-freedom aircraft body and the movement of bogies and wheels.A multi-channel anti-skid braking system is designed for the wheels of the main landing gears with four-wheel bogies.The eight wheels on left and right landing gears are divided into four groups,and each group is controlled via one channel.The cross protection and self-locked protection modules are added between different channels.A multi-channel anti-skid braking system with slip-ratio control or with slip-velocity control is established separately.Based on the aircraft dynamics model,aircraft braking to stop with anti-skid control on dry runway and on wet runway are simulated.The simulation results demonstrate that in asymmetric conditions,added with cross protection and self-locked protection modules,the slip-ratio-controlled braking system can automatically regulate brake torque to avoid deep slipping and correct aircraft course.The proposed research has reference value for improving brake control effect on wet runway.
文摘In view of the increasing cement concrete pavement in China,the proportion of road non-slip surface layer is large,the winter slippery performance is insufficient and the later non-slip treatment is difficult. Through the concrete construction and post-application and development of the anti-skid sand in the road and bridge,the feasible anti-skid optimization measures are put forward.