期刊文献+
共找到299,043篇文章
< 1 2 250 >
每页显示 20 50 100
Heating of nanoparticles and their environment by laser radiation and applications
1
作者 Victor K.Pustovalov 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期78-115,共38页
This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the ... This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the heating of a single nanoparticle or an ensemble thereof,and the dissipation of the energy of nanoparticles due to heat exchange with the environment.The goal is to consider the dependences and values of the temperatures of the nanoparticles and the environment,their time scales,and other parameters that describe these processes.Experimental results and analytical studies on the heating of single metal nanoparticles by laser pulses are discussed,including the laser thresholds for initiating subsequent photothermal processes,how temperature influences the optical properties,and the heating of gold nanoparticles by laser pulses.Experimental studies of the heating of an ensemble of nanoparticles and the results of an analytical study of the heating of an ensemble of nanoparticles and the environment by laser radiation are considered.Nanothermometry methods for nanoparticles under laser heating are considered,including changes in the refractive indices of metals and spectral thermometry of optical scattering of nanoparticles,Raman spectroscopy,the thermal distortion of the refractive index of an environment heated by a nanoparticle,and thermochemical phase transitions in lipid bilayers surrounding a heated nanoparticle.Understanding the sequence of events after radiation absorption and their time scales underlies many applications of nanoparticles.The applicationfields for the laser heating of nanoparticles are reviewed,including thermochemical reactions and selective nanophotothermolysis initiated in the environment by laser-heated nanoparticles,thermal radiation emission by nanoparticles and laser-induced incandescence,electron and ion emission of heated nanoparticles,and optothermal chemical catalysis.Applications of the laser heating of nanoparticles in laser nanomedicine are of particular interest.Significant emphasis is given to the proposed analytical approaches to modeling and calculating the heating processes under the action of a laser pulse on metal nanoparticles,taking into account the temperature dependences of the parameters.The proposed models can be used to estimate the parameters of lasers and nanoparticles in the various applicationfields for the laser heating of nanoparticles. 展开更多
关键词 NANOPARTICLES LASER HEATING MODELING Nanothermometry applications
下载PDF
MXenes: Versatile 2D materials with tailored surface chemistry and diverse applications
2
作者 Sunil Kumar Nitu Kumari Yongho Seo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期253-293,I0008,共42页
MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical str... MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical strength,etc.This review begins by presenting MXenes,providing insights into their structural characteristics,synthesis methods,and surface functional groups.The review covers a thorough analysis of MXene surface properties,including surface chemistry and termination group impacts.The properties of MXenes are influenced by their synthesis,which can be fluorine-based or fluorinedependent.Fluorine-based synthesis techniques involve etching with fluorine-based reagents,mainly including HF or LiF/HCl,while fluorine-free methods include electrochemical etching,chemical vapor deposition(CVD),alkaline etching,Lewis acid-based etching,etc.These techniques result in the emergence of functional groups such as-F,-O,-OH,-Cl,etc.on the MXenes surface,depending on the synthesis method used.Properties of MXenes,such as electrical conductivity,electronic properties,catalytic activity,magnetic properties,mechanical strength,and chemical and thermal stability,are examined,and the role of functional groups in determining these properties is explored.The review delves into the diverse applications of MXenes,encompassing supercapacitors,battery materials,hydrogen storage,fuel cells,electromagnetic interference(EMI) shielding,pollutant removal,water purification,flexible electronics,sensors,additive manufacturing,catalysis,biomedical and healthcare fields,etc.Finally,this article outlines the challenges and opportunities in the current and future development of MXenes research,addressing various aspects such as synthesis scalability,etching challenges,and multifunctionality,and exploring novel applications.The review concludes with future prospects and conclusions envisioning the impact of MXenes on future technologies and innovation. 展开更多
关键词 MXenes 2D materials Surface chemistry MXenes structure SYNTHESIS applications
下载PDF
Atomically Substitutional Engineering of Transition Metal Dichalcogenide Layers for Enhancing Tailored Properties and Superior Applications
3
作者 Zhaosu Liu Si Yin Tee +1 位作者 Guijian Guan Ming‑Yong Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期248-284,共37页
Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behav... Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field. 展开更多
关键词 Transition metal dichalcogenides Atomic substitution Tailored structure Tunable bandgap Enhanced applications
下载PDF
A Review of Contact Electrification at Diversified Interfaces and Related Applications on Triboelectric Nanogenerator
4
作者 Jun Hu Mitsumasa Iwamoto Xiangyu Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期106-130,共25页
The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables... The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG. 展开更多
关键词 Contact electrification INTERFACES Triboelectric nanogenerators Diversified applications
下载PDF
Potential industrial applications of photo/electrocatalysis: Recent progress and future challenges
5
作者 Jinhao Li Jing Ren +8 位作者 Shaoquan Li Guangchao Li Molly Meng-Jung Li Rengui Li Young Soo Kang Xiaoxin Zou Yong Luo Bin Liu Yufei Zhao 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期859-876,共18页
Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis... Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis technology for the advantage in the sustainable production of high-value-added products,and the high efficiency in pollutants remediation.Although there is plenty of outstanding research has been put forward continuously,most of them focuses on catalysis performance and reaction mechanisms in laboratory conditions.Realizing industrial application of photo/electrocatalytic processes is still a challenge that needs to be overcome by social demand.In this regard,this review comprehensively summarized several explorations in thefield of photo/electrocatalytic reduction towards potential industrial applications in recent years.Special attention is paid to the successful attempts and the current status of photo/electrocatalytic water splitting,carbon dioxide conversion,resource utilization from waste,etc.,by using advanced reactors.The key problems and challenges of photo/electrocatalysis in future industrial practice are also discussed,and the possible development directions are also pointed out from the industry view. 展开更多
关键词 PHOTOCATALYSIS ELECTROCATALYSIS Industrial applications H2 economy
下载PDF
Advances in clinical applications of bioceramics in the new regenerative medicine era
6
作者 Noha Elshazly Fayza Eid Nasr +2 位作者 Ayat Hamdy Safa Saied Mohamed Elshazly 《World Journal of Clinical Cases》 SCIE 2024年第11期1863-1869,共7页
In this editorial,we comment on the hard and soft tissue applications of different ceramic-based scaffolds prepared by different mechanisms such as 3D printing,sol-gel,and electrospinning.The new concept of regenerati... In this editorial,we comment on the hard and soft tissue applications of different ceramic-based scaffolds prepared by different mechanisms such as 3D printing,sol-gel,and electrospinning.The new concept of regenerative medicine relies on biomaterials that can trigger in situ tissue regeneration and stem cell recruitment at the defect site.A large percentage of these biomaterials is ceramic-based as they provide the essential requirements of biomaterial principles such as tailored multisize porosity,antibacterial properties,and angiogenic properties.All these previously mentioned properties put bioceramics on top of the hierarchy of biomaterials utilized to stimulate tissue regeneration in soft and hard tissue wounds.Multiple clinical applications registered the use of these materials in triggering soft tissue regeneration in healthy and diabetic patients such as bioactive glass nanofibers.The results were promising and opened new frontiers for utilizing these materials on a larger scale.The same results were mentioned when using different forms and formulas of bioceramics in hard defect regeneration.Some bioceramics were used in combination with other polymers and biological scaffolds to improve their regenerative and mechanical properties.All this progress will enable a larger scale of patients to receive such services with ease and decrease the financial burden on the government. 展开更多
关键词 Regenerative medicine BIOCERAMICS Chronic wounds Bone defects Clinical applications
下载PDF
Energy Storage Systems Technologies, Evolution and Applications
7
作者 Olushola Aina 《Energy and Power Engineering》 2024年第2期97-119,共23页
Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink... Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink through the current energy generating and distribution system. This led to the exploration of other energy sources of which renewable energy (like thermal, solar and wind energy) is fast becoming an integral part of most energy system. However, this innovative and promising energy source is highly unreliable in maintaining a constant peak power that matches demand. Energy storage systems have thus been highlighted as a solution in managing such imbalances and maintaining the stability of supply. Energy storage technologies absorb and store energy, and release it on demand. This includes gravitational potential energy (pumped hydroelectric), chemical energy (batteries), kinetic energy (flywheels or compressed air), and energy in the form of electrical (capacitors) and magnetic fields. This paper provides a detailed and comprehensive overview of some of the state-of-the-art energy storage technologies, its evolution, classification, and comparison along with various area of applications. Also highlighted in this paper is a plethora of power electronic Interface technologies that plays a significant role in enabling optimum performance and utilization of energy storage systems in different areas of application. 展开更多
关键词 Energy Storage Systems Renewable Energy Sources Power Electronic Interface (PEI) applications of Energy Storages
下载PDF
Magnesium research and applications: Past, present and future 被引量:1
8
作者 Jianyue Zhang Jiashi Miao +4 位作者 Nagasivamuni Balasubramani Dae Hyun Cho Thomas Avey Chia-Yu Chang Alan A.Luo 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期3867-3895,共29页
As the lightest structural metal and one of the most abundant metallic elements on earth, magnesium(Mg) has been used as an "industrial metal" for lightweighting in the transportation and electronics industr... As the lightest structural metal and one of the most abundant metallic elements on earth, magnesium(Mg) has been used as an "industrial metal" for lightweighting in the transportation and electronics industries, in addition to other traditional applications in aluminum alloying,steel desulfurization and protective anodes. In recent years, research has shown significant potential for Mg to become a "technology metal"in a variety of new applications from energy storage/battery to biomedical products. However, global Mg production has shown steady but moderate growth in the last three decades. Mg applications as an industry metal are still limited due to some sustainability concerns of primary Mg production, as well as a number of technical issues related to the structural and corrosion performance of commercial Mg alloys.New Mg applications as an industrial or technology metal face tremendous technical challenges, which have been reflected in the intensified global research efforts in the last twenty years. This paper will review some past and present applications, and discuss future opportunities and challenges for Mg research and applications for the global Mg community. 展开更多
关键词 Magnesium alloys Structural applications Lightweighting Biomedical applications Energy applications
下载PDF
Rice Husk at a Glance:From Agro-Industrial to Modern Applications
9
作者 Masoumeh KORDI Naser FARROKHI +1 位作者 Martin I.PECH-CANUL Asadollah AHMADIKHAH 《Rice science》 SCIE CSCD 2024年第1期14-32,共19页
Excessive waste production has led to the concept of a circular bioeconomy to deliver valuable by-products and improve environmental sustainability.The annual worldwide rice production accounts for more than 750 milli... Excessive waste production has led to the concept of a circular bioeconomy to deliver valuable by-products and improve environmental sustainability.The annual worldwide rice production accounts for more than 750 million tons of grain and 150 million tons of husk.Rice husk(RH)contains valuable biomaterials with extensive applications in various fields.The proportions of each component depend primarily on rice genotype,soil chemistry,and climatic conditions.RH and its derivatives,including ash,biochar,hydrochar,and activated carbon have been placed foreground of applications in agriculture and other industries.While the investigation on RH’s compositions,microstructures,and by-products has been done copiously,owing to its unique features,it is still an open-ended area with enormous scope for innovation,research,and technology.Here,we reviewed the latest applications of RH and its derivatives,including fuel and other energy resources,construction materials,pharmacy,medicine,and nanobiotechnology to keep this versatile biomaterial in the spotlight. 展开更多
关键词 circular bioeconomy rice husk activated carbon rice husk ash rice husk biochar rice husk hydrochar rice husk application
下载PDF
Review on analytical technologies and applications in metabolomics
10
作者 XIN MENG YAN LIU +2 位作者 SHUJUN XU LIANRONG YANG RUI YIN 《BIOCELL》 SCIE 2024年第1期65-78,共14页
Over the past decade,the swift advancement of metabolomics can be credited to significant progress in technologies such as mass spectrometry,nuclear magnetic resonance,and multivariate statistics.Currently,metabolomic... Over the past decade,the swift advancement of metabolomics can be credited to significant progress in technologies such as mass spectrometry,nuclear magnetic resonance,and multivariate statistics.Currently,metabolomics garners widespread application across diverse fields including drug research and development,early disease detection,toxicology,food and nutrition science,biology,prescription,and chinmedomics,among others.Metabolomics serves as an effective characterization technique,offering insights into physiological process alterations in vivo.These changes may result from various exogenous factors like environmental conditions,stress,medications,as well as endogenous elements including genetic and protein-based influences.The potential scientific outcomes gleaned from these insights have catalyzed the formulation of innovative methods,poised to further broaden the scope of this domain.Today,metabolomics has evolved into a valuable and widely accepted instrument in the life sciences.However,comprehensive reviews focusing on the sample preparation and analytical methodologies employed in metabolomics within the life sciences are surprisingly scant.This review aims to fill that gap,providing an overview of current trends and recent advancements in metabolomics.Particular emphasis is placed on sample preparation,sophisticated analytical techniques,and their applications in life science research. 展开更多
关键词 Metabolomics Sample preparation Analytical methods Application of metabolomics
下载PDF
A review on lightweight materials for defence applications:Present and future developments 被引量:2
11
作者 Suchart Siengchin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期1-17,共17页
The defence sector is now at an advanced level,catering to the global scenario,and countries also invest heavily in research and development.Countries around the world have spent a lot of money on research and develop... The defence sector is now at an advanced level,catering to the global scenario,and countries also invest heavily in research and development.Countries around the world have spent a lot of money on research and development over the years in order to stay ahead of their competitors.Lightweight materials are critical in defence applications because they allow components to be lighter without sacrificing strength.This review provides an overview of the research related to defence applications.The book provides comprehensive details on current trends in the application of lightweight materials in defence.This review also includes historical and current perspectives on defence technologies.It discusses uses of lightweight materials such as metal matrix composites,polymer composites,ceramic matrix composites,fiber composites in defence sectors Finally,the review paper also emphasizes future military applications of lightweight materials. 展开更多
关键词 Lightweight materials DEFENCE TECHNOLOGIES DEVELOPMENTS applications
下载PDF
Recentadvancesincarbon‐basedmaterials for solar‐driven interfacial photothermal conversion water evaporation:Assemblies,structures,applications,and prospective 被引量:2
12
作者 Yanmin Li Yanying Shi +4 位作者 Haiwen Wang Tiefeng Liu Xiuwen Zheng Shanmin Gao Jun Lu 《Carbon Energy》 SCIE EI CAS CSCD 2023年第11期101-142,共42页
The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,la... The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,lake water,or river water has been recognized as an environmentally friendly process for obtaining clean water in a low‐cost way.However,water transport is restricted by itself by solar energy absorption capacity's limits,especially for finite evaporation rates and insufficient working life.Therefore,it is important to seek photothermal conversion materials that can efficiently absorb solar energy and reasonably design solar‐driven interfacial photothermal conversion water evaporation devices.This paper reviews the research progress of carbon‐based photothermal conversion materials and the mechanism for solar‐driven interfacial photothermal conversion water evaporation,as well as the summary of the design and development of the devices.Based on the research progress and achievements of photothermal conversion materials and devices in the fields of seawater desalination and photothermal electric energy generation in recent years,the challenges and opportunities faced by carbon‐based photothermal conversion materials and devices are discussed.The prospect of the practical application of solar‐driven interfacial photothermal conversion evaporation technology is foreseen,and theoretical guidance is provided for the further development of this technology. 展开更多
关键词 applications carbon‐based materials EVAPORATOR photothermal conversion water evaporation
下载PDF
Background,techniques,applications,current trends,and future directions of minimally invasive endoscopic spine surgery:A review of literature 被引量:1
13
作者 Kevin Tang Samuel Goldman +1 位作者 Fedan Avrumova Darren R Lebl 《World Journal of Orthopedics》 2023年第4期197-206,共10页
Across many of the surgical specialties,the use of minimally invasive techniques that utilize indirect visualization has been increasingly replacing traditional techniques which utilize direct visualization.Arthroscop... Across many of the surgical specialties,the use of minimally invasive techniques that utilize indirect visualization has been increasingly replacing traditional techniques which utilize direct visualization.Arthroscopic surgery of the appendicular skeleton has evolved dramatically and become an integral part of musculoskeletal surgery over the last several decades,allowing surgeons to achieve similar or better outcomes,while reducing cost and recovery time.However,to date,the axial skeleton,with its close proximity to critical neural and vascular structures,has not adopted endoscopic techniques at as rapid of a rate.Over the past decade,increased patient demand for less invasive spine surgery combined with surgeon desire to meet these demands has driven significant evolution and innovation in endoscopic spine surgery.In addition,there has been an enormous advancement in technologies that assist in navigation and automation that help surgeons circumvent limitations of direct visualization inherent to less invasive techniques.There are currently a multitude of endoscopic techniques and approaches that can be utilized in the treatment of spine disorders,many of which are evolving rapidly.Here we present a review of the field of endoscopic spine surgery,including the background,techniques,applications,current trends,and future directions,to help providers gain a better understanding of this growing modality in spine surgery. 展开更多
关键词 ENDOSCOPIC Spine Surgery applications Minimally invasive surgery ENDOSCOPY SPINE
下载PDF
Applications and safety of gold nanoparticles as therapeutic devices in clinical trials
14
作者 Leeann Yao Dejan Bojic Mingyao Liu 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第9期960-967,共8页
Use of gold nanoparticles(GNPs)in medicine is an emerging field of translational research with vast clinical implications and exciting therapeutic potential.However,the safety of using GNPs in human subjects is an imp... Use of gold nanoparticles(GNPs)in medicine is an emerging field of translational research with vast clinical implications and exciting therapeutic potential.However,the safety of using GNPs in human subjects is an important question that remains unanswered.This study reviews over 20 clinical trials focused on GNP safety and aims to summarize all the clinical studies,completed and ongoing,to identify whether GNPs are safe to use in humans as a therapeutic platform.In these studies,GNPs were implemented as drug delivery devices,for photothermal therapy,and utilized for their intrinsic therapeutic effects by various routes of delivery.These studies revealed no major safety concerns with the use of GNPs;however,the number of trials and total patient number remains limited.Multi-dose,multicenter blinded trials are required to deepen our understanding of the use of GNPs in clinical settings to facilitate translation of this novel,multifaceted therapeutic device.Expanding clinical trials will require collaboration between clinicians,scientists,and biotechnology companies. 展开更多
关键词 NANOMEDICINE Clinical studies Gold nanoparticles SAFETY applications
下载PDF
Manufacturing of graphene based synaptic devices for optoelectronic applications
15
作者 Kui Zhou Ziqi Jia +8 位作者 Xin-Qi Ma Wenbiao Niu Yao Zhou Ning Huang Guanglong Ding Yan Yan Su-Ting Han Vellaisamy A L Roy Ye Zhou 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期150-177,共28页
Neuromorphic computing systems can perform memory and computing tasks in parallel on artificial synaptic devices through simulating synaptic functions,which is promising for breaking the conventional von Neumann bottl... Neuromorphic computing systems can perform memory and computing tasks in parallel on artificial synaptic devices through simulating synaptic functions,which is promising for breaking the conventional von Neumann bottlenecks at hardware level.Artificial optoelectronic synapses enable the synergistic coupling between optical and electrical signals in synaptic modulation,which opens up an innovative path for effective neuromorphic systems.With the advantages of high mobility,optical transparency,ultrawideband tunability,and environmental stability,graphene has attracted tremendous interest for electronic and optoelectronic applications.Recent progress highlights the significance of implementing graphene into artificial synaptic devices.Herein,to better understand the potential of graphene-based synaptic devices,the fabrication technologies of graphene are first presented.Then,the roles of graphene in various synaptic devices are demonstrated.Furthermore,their typical optoelectronic applications in neuromorphic systems are reviewed.Finally,outlooks for development of synaptic devices based on graphene are proposed.This review will provide a comprehensive understanding of graphene fabrication technologies and graphene-based synaptic device for optoelectronic applications,also present an outlook for development of graphene-based synaptic device in future neuromorphic systems. 展开更多
关键词 GRAPHENE synaptic device MEMRISTOR optoelectronic applications
下载PDF
Two/Quasi-two-dimensional perovskite-based heterostructures:construction,properties and applications
16
作者 Haizhen Wang Yingying Chen Dehui Li 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期100-123,共24页
Two-dimensional(2D)/quasi-2D organic-inorganic halide perovskites are regarded as naturally formed multiple quantum wells with inorganic layers isolated by long organic chains,which exhibit layered structure,large exc... Two-dimensional(2D)/quasi-2D organic-inorganic halide perovskites are regarded as naturally formed multiple quantum wells with inorganic layers isolated by long organic chains,which exhibit layered structure,large exciton binding energy,strong nonlinear optical effect,tunable bandgap via changing the layer number or chemical composition,improved environmental stability,and excellent optoelectronic properties.The extensive choice of long organic chains endows 2D/quasi-2D perovskites with tunable electron-phonon coupling strength,chirality,or ferroelectricity properties.In particular,the layered nature of 2D/quasi-2D perovskites allows us to exfoliate them to thin plates to integrate with other materials to form heterostructures,the fundamental structural units for optoelectronic devices,which would greatly extend the functionalities in view of the diversity of 2D/quasi-2D perovskites.In this paper,the recent achievements of 2D/quasi-2D perovskite-based heterostructures are reviewed.First,the structure and physical properties of 2D/quasi-2D perovskites are introduced.We then discuss the construction and characterizations of 2D/quasi-2D perovskite-based heterostructures and highlight the prominent optical properties of the constructed heterostructures.Further,the potential applications of 2D/quasi-2D perovskite-based heterostructures in photovoltaic devices,light emitting devices,photodetectors/phototransistors,and valleytronic devices are demonstrated.Finally,we summarize the current challenges and propose further research directions in the field of 2D/quasi-2D perovskite-based heterostructures. 展开更多
关键词 2D perovskites HETEROSTRUCTURES characterization optical properties applications
下载PDF
Additive manufacturing of promising heterostructure for biomedical applications
17
作者 Cijun Shuai Desheng Li +2 位作者 Xiong Yao Xia Li Chengde Gao 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期363-405,共43页
As a new generation of materials/structures,heterostructure is characterized by heterogeneous zones with dramatically different mechanical,physical or chemical properties.This endows heterostructure with unique interf... As a new generation of materials/structures,heterostructure is characterized by heterogeneous zones with dramatically different mechanical,physical or chemical properties.This endows heterostructure with unique interfaces,robust architectures,and synergistic effects,making it a promising option as advanced biomaterials for the highly variable anatomy and complex functionalities of individual patients.However,the main challenges of developing heterostructure lie in the control of crystal/phase evolution and the distribution/fraction of components and structures.In recent years,additive manufacturing techniques have attracted increasing attention in developing heterostructure due to the unique flexibility in tailored structures and synthetic multimaterials.This review focuses on the additive manufacturing of heterostructure for biomedical applications.The structural features and functional mechanisms of heterostructure are summarized.The typical material systems of heterostructure,mainly including metals,polymers,ceramics,and their composites,are presented.And the resulting synergistic effects on multiple properties are also systematically discussed in terms of mechanical,biocompatible,biodegradable,antibacterial,biosensitive and magnetostrictive properties.Next,this work outlines the research progress of additive manufacturing employed in developing heterostructure from the aspects of advantages,processes,properties,and applications.This review also highlights the prospective utilization of heterostructure in biomedical fields,with particular attention to bioscaffolds,vasculatures,biosensors and biodetections.Finally,future research directions and breakthroughs of heterostructure are prospected with focus on their more prospective applications in infection prevention and drug delivery. 展开更多
关键词 additive manufacturing HETEROSTRUCTURE synergistic effects integrated properties biomedical applications
下载PDF
Colloidal nanoparticles prepared from zein and casein:interactions,characterizations and emerging food applications
18
作者 Yi Wang Wusigale Yangchao Luo 《Food Science and Human Wellness》 SCIE CSCD 2023年第2期337-350,共14页
Protein colloidal nanoparticles(NPs)are ubiquitous present in nature and function as building blocks with multiple functions in both food formulations and biological processes.Food scientists are inspired by naturally... Protein colloidal nanoparticles(NPs)are ubiquitous present in nature and function as building blocks with multiple functions in both food formulations and biological processes.Food scientists are inspired by naturally occurring proteins to induce self-assembly behavior of protein by manipulating environmental parameters,providing opportunities to construct special and expected NPs.Zein and casein,the main proteins derived from corn and milk,are two examples of the most prevalently studied food proteins for nanoarchitectures in recent years.In this article,the compositions,structures,and physicochemical properties of these two proteins and casein derivatives are summarized as well as their interactions and characterizations.Strategies to fabricate zein-sodium caseinate based NPs are critically highlighted and illustrated.Particularly,applications such as encapsulation and delivery of bioactive compounds,producing food packaging for enhanced antioxidative and antimicrobial effects,and stabilization of emulsions to achieve fat replacement.Due to the imperative role of food proteins in diet composition,this review not only provides cutting-edge knowledge for nanoparticle construction but also opens new avenues for efficient utilization and exploitation of food proteins. 展开更多
关键词 ZEIN CASEIN Nanoparticles INTERACTIONS applications
下载PDF
Development and prospects of degradable magnesium alloys for structural and functional applications in the fields of environment and energy
19
作者 Yuanding Huang Yaping Zhang +4 位作者 Jiangfeng Song Fusheng Pan Regine Willumeit-Römer Karl Ulrich Kainer Norbert Hort 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期3926-3947,共22页
Magnesium and its alloys have such advantages with lightweight, high specific strength, good damping, high castability and machinability,which make them an attractive choice for applications where weight reduction is ... Magnesium and its alloys have such advantages with lightweight, high specific strength, good damping, high castability and machinability,which make them an attractive choice for applications where weight reduction is important, such as in the aerospace and automotive industries.However, their practical applications are still limited because of their poor corrosion resistance, low high temperature strength and ambient formability. Based on such their property shortcomings, recently degradable magnesium alloys were developed for broadening their potential applications. Considering the degradable Mg alloys for medical applications were well reviewed, the present review put an emphasis on such degradable magnesium alloys for structural and functional applications, especially the applications in the environmental and energy fields. Their applications as fracture ball in fossil energy, sacrificial anode, washing ball, and as battery anodes, transient electronics, were summarized. The roles of alloying elements in magnesium and the design concept of such degradable magnesium alloys were discussed. The existing challenges for extending their future applications are explored. 展开更多
关键词 Magnesium alloys ALLOYING Structural applications Degradation Mechanical property Corrosion property Fossil and hydrogen energy Fracture ball Battery anode Transient electronics Hydrogen energy
下载PDF
Improved RF power performance of InAlN/GaN HEMT by optimizing rapid thermal annealing process for high-performance low-voltage terminal applications
20
作者 周雨威 宓珉瀚 +9 位作者 王鹏飞 龚灿 陈怡霖 陈治宏 刘捷龙 杨眉 张濛 朱青 马晓华 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期474-480,共7页
Improved radio-frequency(RF)power performance of InAlN/GaN high electron mobility transistor(HEMT)is achieved by optimizing the rapid thermal annealing(RTA)process for high-performance low-voltage terminal application... Improved radio-frequency(RF)power performance of InAlN/GaN high electron mobility transistor(HEMT)is achieved by optimizing the rapid thermal annealing(RTA)process for high-performance low-voltage terminal applications.By optimizing the RTA temperature and time,the optimal annealing condition is found to enable low parasitic resistance and thus a high-performance device.Besides,compared with the non-optimized RTA HEMT,the optimized one demonstrates smoother ohmic metal surface morphology and better heterojunction quality including the less degraded heterojunction sheet resistance and clearer heterojunction interfaces as well as negligible material out-diffusion from the barrier to the channel and buffer.Benefiting from the lowered parasitic resistance,improved maximum output current density of 2279 mA·mm^(-1)and higher peak extrinsic transconductance of 526 mS·mm^(-1)are obtained for the optimized RTA HEMT.In addition,due to the superior heterojunction quality,the optimized HEMT shows reduced off-state leakage current of 7×10^(-3)mA·mm^(-1)and suppressed current collapse of only 4%,compared with those of 1×10^(-1)mA·mm^(-1)and 15%for the non-optimized one.At 8 GHz and V_(DS)of 6 V,a significantly improved power-added efficiency of 62%and output power density of 0.71 W·mm^(-1)are achieved for the optimized HEMT,as the result of the improvement in output current,knee voltage,off-state leakage current,and current collapse,which reveals the tremendous advantage of the optimized RTA HEMT in high-performance low-voltage terminal applications. 展开更多
关键词 InAlN/GaN rapid thermal annealing low voltage RF power performance terminal applications
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部