期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
基于AO-AVOA-BP神经网络模型的锂电池SOH预测
1
作者 李军毅 汪兴兴 +2 位作者 陈祥 陈林飞 邓业林 《电子测量技术》 北大核心 2025年第4期71-79,共9页
为提供准确可靠的锂电池健康状态预测,提出了一种基于非洲秃鹫优化算法融合天鹰优化算法优化BP神经网络的预测模型。通过对电池充电过程中的电压、电流和温度数据的分析,基于灰色关联分析验证健康因子与电池SOH的相关性,确定4个健康因... 为提供准确可靠的锂电池健康状态预测,提出了一种基于非洲秃鹫优化算法融合天鹰优化算法优化BP神经网络的预测模型。通过对电池充电过程中的电压、电流和温度数据的分析,基于灰色关联分析验证健康因子与电池SOH的相关性,确定4个健康因子作为模型的输入,结合基于AO-AVOA优化的BP神经网络模型,实现更精确的SOH预测。将提出的模型与其他优化模型对锂电池SOH进行预测,对各项指标进行对比分析,结果表明,所提出的预测模型平均绝对误差小于0.0089,均方根误差小于0.0112,平均绝对百分比误差小于1.4512%,具有精度高、泛化性强等特点,可有效用于锂电池的SOH预测。 展开更多
关键词 锂电池 健康状态 BP神经网络 非洲秃鹫优化算法 天鹰优化算法
原文传递
改进AO优化算法的折反射全景镜头畸变参数估计
2
作者 张越 张宁 徐熙平 《中国光学(中英文)》 北大核心 2025年第1期89-104,共16页
针对现有镜头畸变参数估计方法存在精度低、易陷入局部最优解的问题,提出了一种基于改进天鹰优化算法的折反射全景相机镜头畸变参数方法。首先,通过融合混沌映射、自适应调节策略和通讯交流策略,增强了天鹰优化算法的寻优能力,解决了其... 针对现有镜头畸变参数估计方法存在精度低、易陷入局部最优解的问题,提出了一种基于改进天鹰优化算法的折反射全景相机镜头畸变参数方法。首先,通过融合混沌映射、自适应调节策略和通讯交流策略,增强了天鹰优化算法的寻优能力,解决了其收敛速度慢且容易陷入局部最优解的问题;其次,通过空间中直线对应的畸变边缘和单参数除法模型推导并确定畸变参数分布范围;然后,构建包含畸变参数的优化目标函数;最后,采用改进的天鹰优化算法对优化目标函数寻优求得最佳畸变参数。通过对标准图库图像和全景图像的校正结果进行分析,本文提出的方法估计的主点误差在0.5 pixel以内,径向畸变系数误差在2.5%以内,能够有效估计镜头畸变参数并实现全景图像畸变校正。本文方法提高了视觉导航系统在环境感知任务下的图像质量,在工程应用中具有潜在价值。 展开更多
关键词 折反射全景相机 天鹰优化算法 混沌映射 直线特征 畸变校正
下载PDF
基于RCMFME和AO-ELM的齿轮箱损伤识别策略
3
作者 沈羽 赵旭 《机电工程》 CAS 北大核心 2024年第2期226-235,共10页
针对模糊熵只考虑信号的局部特征而忽略信号的全局特征,导致齿轮箱故障识别的准确率不佳的问题,提出了一种基于精细复合多尺度模糊测度熵(RCMFME)、天鹰优化器(AO)优化极限学习机(ELM)的齿轮箱故障诊断方法。首先,在精细复合多尺度模糊... 针对模糊熵只考虑信号的局部特征而忽略信号的全局特征,导致齿轮箱故障识别的准确率不佳的问题,提出了一种基于精细复合多尺度模糊测度熵(RCMFME)、天鹰优化器(AO)优化极限学习机(ELM)的齿轮箱故障诊断方法。首先,在精细复合多尺度模糊熵的基础上,对矢量的构造方式进行了改进,提出了能够同时考虑时间序列局部特征和全局特征的RCMFME方法;随后,利用RCMFME指标提取了齿轮箱振动信号的熵值,组建了故障特征向量;接着,利用AO算法对极限学习机的参数进行了自适应搜索,生成了参数最优的多类别分类器;最后,将训练样本的故障特征向量输入至AO-ELM分类模型中进行了模型训练,以构造性能最优的分类器,并实现了对齿轮箱测试样本的故障识别目的;利用两种齿轮箱振动数据集进行了实验,在识别准确率和识别稳定性方面,与相关的特征提取方法进行了对比。研究结果表明:采用基于RCMFME和AO-ELM的故障诊断方法能够分别取得100%和98%的分类准确率,平均识别准确率分别达到了100%和98%,优于精细复合多尺度全局模糊熵(RCMGFE)、精细复合多尺度模糊熵(RCMFE)、精细复合多尺度样本熵(RCMSE)。该方法具有显著的应用潜力。 展开更多
关键词 齿轮箱故障诊断 精细复合多尺度模糊测度熵 天鹰优化器 极限学习机 ao-ELM分类模型 特征提取
下载PDF
基于GJO特征量优选的AO-RF的变压器故障诊断模型 被引量:2
4
作者 叶育林 刘森 +6 位作者 黄松 韩晓慧 杜振斌 李彬 吕杰 薛杨 赵春琳 《高压电器》 CAS CSCD 北大核心 2024年第5期99-107,共9页
在变压器故障诊断过程中,进行合理的特征优选,将有助于提高诊断模型的诊断精度,为此,文中提出了一种基于金豺优化算法(golden Jackal optimization,GJO)特征量优选与AO-RF的变压器故障诊断模型。首先,采用GJO对构建的21维变压器油中溶... 在变压器故障诊断过程中,进行合理的特征优选,将有助于提高诊断模型的诊断精度,为此,文中提出了一种基于金豺优化算法(golden Jackal optimization,GJO)特征量优选与AO-RF的变压器故障诊断模型。首先,采用GJO对构建的21维变压器油中溶解气体特征量进行优选;然后,根据GJO得到的特征优选结果,采用天鹰算法(aquila optimizer,AO)优化随机森林(random forest,RF)的变压器故障诊断模型对变压器故障进行诊断,并与不同特征量、不同故障诊断模型的诊断结果进行了对比。实验结果表明:GJO优选特征量相比21维原始特征、三比值法、无编码比值法以及AO优选特征量的故障诊断准确率可提高1.12%~25.78%,kappa系数可提高0.02~0.24;AO-RF故障诊断模型较RF、SVM、ELM、SSA-RF、WOA-RF、GJO-RF模型的诊断准确率可提高1.84%~15.86%,kappa系数可提高0.02~0.16,验证了所提方法的有效性和准确性。 展开更多
关键词 变压器 故障诊断 金豺算法 随机森林 天鹰算法
下载PDF
RLDEAO优化的空气质量数据聚类分析
5
作者 田闯 黄鹤 +2 位作者 杨澜 王会峰 茹锋 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2024年第5期542-553,共12页
对空气质量数据进行聚类,传统聚类方法因受初始点的影响,存在随机性高、聚类精度低以及多个中心点出现在同一簇中的问题,为此提出了一种反向学习差分进化天鹰优化器(RLDEAO)优化的K-means互补迭代空气质量数据聚类方法。天鹰优化器(aqui... 对空气质量数据进行聚类,传统聚类方法因受初始点的影响,存在随机性高、聚类精度低以及多个中心点出现在同一簇中的问题,为此提出了一种反向学习差分进化天鹰优化器(RLDEAO)优化的K-means互补迭代空气质量数据聚类方法。天鹰优化器(aquila optimizer,AO)算法具有很强的探索能力,不易受初始点的影响且更易实现,但易陷入局部最优。基于自适应逐维小孔成像反向学习策略、停滞扰动结合莱维飞行策略以及生物进化策略等改进思想,对AO算法进行了改进,有效提高了搜索性能,避免了局部最优;在求取聚类中心点时,设计了一种加权最大最小距离积法(weighted maximum minimum distance product,WMMP),能反映各特征的重要性,对改进聚类结果作用良好;将RLDEAO与WMMP相结合优化K-means互补迭代,提高了搜索速率和搜索精度。通过在多个数据集上的聚类测试,发现RLDEAO-KMC算法的收敛精度和聚类效果较AO-KMC、FCM、KMC、KMC++算法更优。可知,RLDEAO-KMC算法可以更高效地对空气质量数据进行聚类分析,有针对性地做出预测和应对。 展开更多
关键词 K-MEANS聚类算法 天鹰优化器(ao) 加权最大最小距离积法
下载PDF
基于AO-VMD-BF和多模型融合的电梯故障诊断
6
作者 邱朝洁 张林鍹 +2 位作者 李名洪 张盼盼 郑兴 《科学技术与工程》 北大核心 2024年第35期15023-15030,共8页
为了准确地实现电梯故障诊断,提出基于AO-VMD-BF和多模型融合的电梯故障诊断。首先,利用天鹰优化算法(aquila optimizer algorithm,AO)优化的变分模态分解(variational mode decomposition,VMD)将信号分解为多个模态分量,并利用皮尔逊... 为了准确地实现电梯故障诊断,提出基于AO-VMD-BF和多模型融合的电梯故障诊断。首先,利用天鹰优化算法(aquila optimizer algorithm,AO)优化的变分模态分解(variational mode decomposition,VMD)将信号分解为多个模态分量,并利用皮尔逊相关系数去除虚假分量,针对剩余信号仍有噪声的问题,通过巴特沃斯滤波(Butterworth filter,BF)进行二次去噪,对去噪筛选后的模态分量子序列进行重构即可得到去噪后的振动信号。然后提取时域、频域和熵特征,构成多域特征向量集。最后建立以卷积神经网络(convolutional neural network,CNN)、随机森林(random forest,RF)、支持向量机(support vector machine,SVM)和自适应提升(adaptive boosting,AdaBoost)为基模型,极限梯度提升树(extreme gradient boosting,XGBoost)为元分类器的Stacking集成学习的电梯故障诊断模型。实验结果表明,所提的方法能够有效提取电梯轿厢振动信号中的故障特征,对电梯故障进行准确、有效的诊断。 展开更多
关键词 天鹰优化算法 变分模态分解 Stacking集成学习 电梯轿厢振动信号
下载PDF
融合多策略天鹰算法优化汽车ABS的PID控制
7
作者 田闯 黄鹤 +3 位作者 林国庆 高涛 王萍 赵力国 《哈尔滨工业大学学报》 北大核心 2025年第4期52-61,共10页
为改善现有防抱死制动系统采用比例积分微分(PID)控制方法实时性差且无法自动调整参数的问题,提出了一种多策略天鹰优化算法的防抱死制动系统PID控制方法。以单轮车辆模型为例,首先,构建汽车防抱死系统的PID控制器仿真模型。其次,提出... 为改善现有防抱死制动系统采用比例积分微分(PID)控制方法实时性差且无法自动调整参数的问题,提出了一种多策略天鹰优化算法的防抱死制动系统PID控制方法。以单轮车辆模型为例,首先,构建汽车防抱死系统的PID控制器仿真模型。其次,提出了一种融合差分进化、反向学习和停滞扰动策略的天鹰搜索算法(DERLSP-AO),解决了天鹰优化算法(AO)易陷入局部最优及搜索精度有限的问题。通过设计狩猎视角反向学习策略来增大搜索范围,提高了算法效率;设计了停滞扰动策略,防止AO陷入局部最优;同时,结合差分进化策略,使天鹰种群进化淘汰掉较差个体。通过混合多种策略,完成了DERLSP-AO方法设计。然后,利用最优个体整定PID参数,得到优化的DERLSP-AO-PID控制器。最后,选择不同路面条件对汽车防抱死制动过程进行仿真实验。结果表明,相比现有算法,基于DERLSP-AO-PID控制的防抱死系统(ABS)输出的滑移率曲线,能够更好地保持在期望范围内,车辆制动时间更少,制动距离也较短,进一步验证了改进算法的有效性,制动性能有所提升。 展开更多
关键词 防抱死系统(ABS) PID控制器 天鹰优化算法(ao) 天鹰算法优化PID 滑移率 路面附着系数 制动距离
下载PDF
多策略改进的天鹰优化器及其在路径规划中的应用
8
作者 吴素谦 闫建国 +3 位作者 杨斌 覃涛 刘影 杨靖 《计算机应用》 北大核心 2025年第3期937-945,共9页
针对原始天鹰优化器(AO)存在局部开发能力不足、寻优精度低以及收敛速度慢等缺陷,提出一种用于机器人路径规划的多策略融合改进的天鹰优化器(MSIAO)。首先,引入Sobol序列对天鹰种群进行初始化,从而有利于初始种群的多样性,并提高收敛速... 针对原始天鹰优化器(AO)存在局部开发能力不足、寻优精度低以及收敛速度慢等缺陷,提出一种用于机器人路径规划的多策略融合改进的天鹰优化器(MSIAO)。首先,引入Sobol序列对天鹰种群进行初始化,从而有利于初始种群的多样性,并提高收敛速度;其次,利用黄金正弦算子和粒子群的自我学习与社会学习的思想改进局部搜索方式,以增强算法的开发能力,并降低陷入局部最优的可能;同时,采用一种非线性平衡因子作为两阶段的切换条件,使种群之间的交流更充分,并能更有效地均衡全局搜索与局部开发。通过在12个基准测试函数、10个CEC2017复杂函数上的仿真实验可知,所提改进策略极大地增强了MSIAO的全局优化能力。将MSIAO应用于机器人路径规划的结果表明,MSIAO可以获得更短且更安全可靠的移动路径。在20×20栅格地图中,MSIAO的平均路径相较于粒子群优化(PSO)算法、原始的AO和蝴蝶优化算法(BOA)分别缩短了2.53%、3.83%和6.70%;在40×40栅格地图中,MSIAO的平均路径相较于上述3种算法分别缩短了10.65%、5.27%和14.88%。可见MSIAO的寻径更高效。 展开更多
关键词 天鹰优化器 粒子群优化算法 Sobol序列 数值优化 路径规划
下载PDF
基于DPSO的改进AO^*算法在大型复杂电子系统最优序贯测试中的应用 被引量:19
9
作者 蒋荣华 王厚军 龙兵 《计算机学报》 EI CSCD 北大核心 2008年第10期1835-1840,共6页
针对大型复杂电子系统最优序贯测试问题,提出一种基于离散粒子群算法(DPSO)和改进AO^*算法相结合的方法.DPSO优化AO^*算法中每个要扩展节点的测试集从而减少测试个数;改进AO^*算法通过规定扩展节点估价值的范围,减少其回溯次数.实... 针对大型复杂电子系统最优序贯测试问题,提出一种基于离散粒子群算法(DPSO)和改进AO^*算法相结合的方法.DPSO优化AO^*算法中每个要扩展节点的测试集从而减少测试个数;改进AO^*算法通过规定扩展节点估价值的范围,减少其回溯次数.实例验证表明,该算法不仅有效地降低了计算复杂度,大大减少测试代价,缩短测试时间,而且避免了原有AO^*算法当备选的测试集太大时容易出现“计算爆炸”的缺点. 展开更多
关键词 离散粒子群算法 ao^*算法 序贯测试 哈夫曼编码 可测性设计
下载PDF
IAO优化SVM的电机滚动轴承故障诊断 被引量:19
10
作者 李红月 高英杰 朱文昌 《电子测量技术》 北大核心 2022年第10期126-132,共7页
对于当前存在电机滚动轴承多种类型故障分类准确率不高的现象,提出一种改进天鹰优化算法(IAO)优化支持向量机(SVM)的电机滚动轴承故障诊断方法。首先,介绍了基本天鹰优化算法,然后引入Tent混沌映射和自适应权重对其改进,提高收敛速度,... 对于当前存在电机滚动轴承多种类型故障分类准确率不高的现象,提出一种改进天鹰优化算法(IAO)优化支持向量机(SVM)的电机滚动轴承故障诊断方法。首先,介绍了基本天鹰优化算法,然后引入Tent混沌映射和自适应权重对其改进,提高收敛速度,防止陷入局部最优;其次,对10种状态下的滚动轴承故障时域信号样本进行VMD分解,得到不同状态的时频域特征组成特征样本集。最后,利用IAO算法对支持向量机的惩罚参数(c)和核参数(g)进行优化,从而构建IAO-SVM滚动轴承故障诊断模型。最终结果表明,IAO-SVM诊断模型对电机滚动轴承10种状态下的故障诊断准确率最高达100%。 展开更多
关键词 滚动轴承 变分模态分解 天鹰优化算法 支持向量机 故障诊断
原文传递
IMRPE和AO-SVM在往复压缩机故障识别中的应用 被引量:4
11
作者 李占锋 张军昌 《机电工程》 CAS 北大核心 2023年第12期1983-1990,共8页
针对常规故障诊断方法不适用于提取往复压缩机声音信号的故障特征,导致往复压缩机的故障识别精度不高的问题,提出了基于改进多尺度反向排列熵(IMRPE)、t-分布邻域嵌入(t-SNE)和天鹰优化器(AO)优化支持向量机(SVM)的往复压缩机故障诊断... 针对常规故障诊断方法不适用于提取往复压缩机声音信号的故障特征,导致往复压缩机的故障识别精度不高的问题,提出了基于改进多尺度反向排列熵(IMRPE)、t-分布邻域嵌入(t-SNE)和天鹰优化器(AO)优化支持向量机(SVM)的往复压缩机故障诊断方法。首先,采用具有优异特征表达性能的IMRPE方法来提取往复压缩机声音信号的故障信息,构建了反映样本故障特征属性的故障特征向量;然后,利用t-SNE方法对故障特征进行了特征降维处理,以降低故障特征维数和去除冗余特征,从而获得了低维的敏感特征;最后,利用AO方法对SVM的惩罚系数和核参数进行了自适应搜索,从而建立了结构参数最优的分类器,并将低维的敏感故障特征输入至AO-SVM分类器中,进行了训练和分类,依据测试样本的输出标签完成了样本的故障识别;以往复压缩机声音信号故障数据为对象开展了研究,并评估了IMRPE-t-SNE-AO-SVM方法的有效性和稳定性。研究结果表明:IMRPE-t-SNE-AO-SVM方法的故障识别精度达到了97%,不仅能够用于准确且稳定地识别往复压缩机的故障类型,提高故障识别的精度,而且在准确率和稳定性方面优于其它对比方法。 展开更多
关键词 压缩机 故障诊断 改进多尺度反向排列熵 t-分布邻域嵌入 天鹰优化器优化支持向量机
下载PDF
Chaotic Aquila Optimization Algorithm for Solving Phase Equilibrium Problems and Parameter Estimation of Semi-empirical Models 被引量:1
12
作者 Oguz Emrah Turgut Mert Sinan Turgut Erhan Kırtepe 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第1期486-526,共41页
This research study aims to enhance the optimization performance of a newly emerged Aquila Optimization algorithm by incorporating chaotic sequences rather than using uniformly generated Gaussian random numbers.This w... This research study aims to enhance the optimization performance of a newly emerged Aquila Optimization algorithm by incorporating chaotic sequences rather than using uniformly generated Gaussian random numbers.This work employs 25 different chaotic maps under the framework of Aquila Optimizer.It considers the ten best chaotic variants for performance evaluation on multidimensional test functions composed of unimodal and multimodal problems,which have yet to be studied in past literature works.It was found that Ikeda chaotic map enhanced Aquila Optimization algorithm yields the best predictions and becomes the leading method in most of the cases.To test the effectivity of this chaotic variant on real-world optimization problems,it is employed on two constrained engineering design problems,and its effectiveness has been verified.Finally,phase equilibrium and semi-empirical parameter estimation problems have been solved by the proposed method,and respective solutions have been compared with those obtained from state-of-art optimizers.It is observed that CH01 can successfully cope with the restrictive nonlinearities and nonconvexities of parameter estimation and phase equilibrium problems,showing the capabilities of yielding minimum prediction error values of no more than 0.05 compared to the remaining algorithms utilized in the performance benchmarking process. 展开更多
关键词 aquila optimization algorithm Chaotic maps Parameter estimation Phase equilibrium Unconstrained optimization
下载PDF
小样本量下的锂离子电池健康状态预测
13
作者 邓栋梁 银立新 +1 位作者 余瑾 黄先红 《电池》 北大核心 2025年第1期129-135,共7页
当前数据驱动的健康状态(SOH)预测方法依赖于庞大的数据规模。提出一种小样本量下的电池SOH预测方法:采用Levy飞行策略优化天鹰优化(AO)算法的权值和阈值;提出广义改进学习(GOBL)来生成更好的候选解集,以增加种群的多样性,加快优化方法... 当前数据驱动的健康状态(SOH)预测方法依赖于庞大的数据规模。提出一种小样本量下的电池SOH预测方法:采用Levy飞行策略优化天鹰优化(AO)算法的权值和阈值;提出广义改进学习(GOBL)来生成更好的候选解集,以增加种群的多样性,加快优化方法的收敛速度,得到改进天鹰优化(IAO)算法;利用IAO算法优化时序卷积神经网络(TCN)的权值和阈值,建立IAO-TCN电池SOH预测模型;在优化的TCN(IAO-TCN)模型基础上,引入多头注意力机制,使模型自动聚焦于电池数据的重要特征,提升预测模型的精度。通过马里兰大学电池数据进行实例分析,与TCN、极限学习机、长短期记忆神经网络和卷积神经网络等进行对比,发现所提模型平均误差控制在2.5%以内,准确率较其他模型提升10个百分点以上,稳定性、预测精度和泛化能力均较好。 展开更多
关键词 锂离子电池 健康状态(SOH)预测 时序卷积神经网络(TCN) 天鹰优化(ao)算法 多头注意力机制
下载PDF
双RIS辅助的MISO系统吞吐量最大化研究
14
作者 谢文武 张沁可 +3 位作者 梁锡涛 刘晨宇 余超 王骥 《电子与信息学报》 北大核心 2025年第2期353-362,共10页
近年来,有源可重构智能表面(ARIS)技术获得了学术界的广泛关注。然而,ARIS在多RIS辅助无线通信系统中的应用还缺乏相关研究。针对此问题,该文提出基于双RIS辅助的无线通信系统模型。模型假设基站(BS)和用户之间的直连链路受阻,仅通过RI... 近年来,有源可重构智能表面(ARIS)技术获得了学术界的广泛关注。然而,ARIS在多RIS辅助无线通信系统中的应用还缺乏相关研究。针对此问题,该文提出基于双RIS辅助的无线通信系统模型。模型假设基站(BS)和用户之间的直连链路受阻,仅通过RIS形成的反射链路进行通信。在此基础上,根据ARIS与被动RIS(PRIS)的不同组合情况,提出4种RIS组合模型。模型的目标是优化基站波束赋形、RIS的相移矩阵和功率分配因子,以最大化系统通信容量。由于该优化问题为非凸问题,该文采用了交替优化算法(AO)与连续凸逼近(SCA)对问题进行处理。仿真结果表明,无论基站发射功率高或低,TAAR组合模型的性能均显著优于传统单ARIS配置。 展开更多
关键词 双RIS MISO 交替优化算法 凸逼近
下载PDF
土石坝渗流性态分析的IAO-XGBoost集成学习模型与预测结果解释 被引量:13
15
作者 余红玲 王晓玲 +3 位作者 任炳昱 郑鸣蔚 吴国华 朱开渲 《水利学报》 EI CSCD 北大核心 2023年第10期1195-1209,共15页
针对现有土石坝渗流数值模拟方法计算效率较低、难以实时分析大坝渗流性态,而现有基于机器学习算法建立的代理模型又存在模型可解释性较差的问题,提出土石坝渗流性态分析的IAO-XGBoost集成学习模型,并基于Shapley加性解释(SHapley Addit... 针对现有土石坝渗流数值模拟方法计算效率较低、难以实时分析大坝渗流性态,而现有基于机器学习算法建立的代理模型又存在模型可解释性较差的问题,提出土石坝渗流性态分析的IAO-XGBoost集成学习模型,并基于Shapley加性解释(SHapley Additive exPlanation,SHAP)理论对预测结果进行解释。在采用多地质体自动建模方法和CFD技术对大坝渗流场进行计算分析的基础上,基于改进的天鹰(Improved Aquila Optimization,IAO)算法优化极限梯度提升(eXtreme Gradient Boosting,XGBoost)集成学习算法中的n_estimators、max_depth和learning_rate等超参数,进而建立基于IAO-XGBoost集成学习算法的大坝渗流性态指标预测模型,以揭示上下游水位和坝基地层渗透系数等输入特征变量与渗流性态指标模拟值间的复杂非线性映射关系。进一步地,将IAO-XGBoost集成学习算法与可解释机器学习框架SHAP理论相结合,挖掘影响大坝渗流性态指标预测结果的关键特征,并解释特征变量对渗流性态指标预测的影响。案例研究表明,IAO-XGBoost具有较高的预测精度,相比于IAO-GBDT、IAO-RF、IAO-DT和IAO-SVR算法,其预测精度分别提高了0.52%、11.64%、37.21%和25.07%;且相比于IAO-XGBoost、IAO-GBDT和IAO-RF算法的特征重要性分析方法,SHAP理论具有更强的模型可解释性,提高了预测结果的可信度。 展开更多
关键词 土石坝 渗流性态分析 XGBoost 可解释性 SHAP理论 改进的天鹰优化算法
下载PDF
基于AO-VMD的往复压缩机故障特征提取方法 被引量:8
16
作者 李颖 王鹏 +1 位作者 吴仕虎 巴鹏 《机电工程》 CAS 北大核心 2023年第5期673-681,共9页
采用原始VMD方法对往复压缩机故障进行诊断时,往复压缩机易损部件的振动信号存在非平稳、非线性这一问题,为此,提出了一种使用天鹰算法(AO),以各分量样本熵的最小值作为适应度函数,对变分模态分解(VMD)进行优化分解的往复压缩机故障特... 采用原始VMD方法对往复压缩机故障进行诊断时,往复压缩机易损部件的振动信号存在非平稳、非线性这一问题,为此,提出了一种使用天鹰算法(AO),以各分量样本熵的最小值作为适应度函数,对变分模态分解(VMD)进行优化分解的往复压缩机故障特征提取方法。首先,对往复压缩机滑动轴承的故障进行了分析,对其不同状态下的振动信号进行了分析处理;然后,先使用小波消噪对振动信号进行了消噪处理,再分别使用原始VMD和AO-VMD新型分解方法对其进行了处理,并得到了BLIMF分量;最后,计算两种分解方法中各分量的多尺度样本熵(MSE)值,对不同状态的多尺度样本熵值进行了对比分析,从而实现了对往复压缩机各类故障的诊断。研究结果表明:AO-VMD方法利用AO强大的快速搜索和开发能力后,故障分类性能明显优于原始VMD分解方法,各类故障信号多尺度样本熵值区分明显;其省时方面效果显著,基于遗传算法优化VMD方法分解耗时427 s,而AO-VMD方法仅需165 s,满足故障诊断分解方法要求。 展开更多
关键词 容积型压缩机 变分模态分解 天鹰算法 故障诊断 多尺度样本熵 滑动轴承故障
下载PDF
基于AO-VMD和IAO-SVM的齿轮箱故障诊断 被引量:7
17
作者 王博 南新元 《机械传动》 北大核心 2023年第5期143-149,共7页
针对提高变分模态分解(Variational Mode Decomposition,VMD)的自适应性、优选本征模态分量(Intrinsic Mode Function,IMF)及多故障分类的问题,提出一种天鹰优化器(Aquila Optimizer,AO)优化VMD、综合评价模型优选IMF、改进天鹰优化器(I... 针对提高变分模态分解(Variational Mode Decomposition,VMD)的自适应性、优选本征模态分量(Intrinsic Mode Function,IMF)及多故障分类的问题,提出一种天鹰优化器(Aquila Optimizer,AO)优化VMD、综合评价模型优选IMF、改进天鹰优化器(Improved Aquila Optimizer,IAO)优化支持向量机(Support Vector Machine,SVM)的齿轮箱故障诊断方法。首先,采用AO优化VMD的参数并分解原始信号;其次,构建基于相关系数、峭度、包络熵、能量熵的CRITIC-TOPSIS综合评价模型,优选IMF,提取能量熵建立特征向量;最后,将其输入IAO-SVM识别故障类型。通过实验验证所提出方法的有效性。 展开更多
关键词 天鹰优化器 变分模态分解 综合评价模型 改进天鹰优化器 支持向量机
下载PDF
基于VMD和IAO-SVM的电压暂降源识别方法 被引量:13
18
作者 陈晓华 王志平 +6 位作者 吴杰康 陈盛语 许海文 孙中海 杨国荣 江剑民 陈锦涛 《广东电力》 2023年第1期59-67,共9页
针对支持向量机(support vector machine,SVM)的惩罚因子、核函数参数选择困难和天鹰优化(aquila optimizer,AO)算法在寻优时容易陷入局部最优解的问题,利用改进的天鹰优化(improved aquila optimizer,IAO)算法对SVM的惩罚因子和核函数... 针对支持向量机(support vector machine,SVM)的惩罚因子、核函数参数选择困难和天鹰优化(aquila optimizer,AO)算法在寻优时容易陷入局部最优解的问题,利用改进的天鹰优化(improved aquila optimizer,IAO)算法对SVM的惩罚因子和核函数参数进行寻优,构建IAO-SVM分类器,利用变分模态分解(variational mode decomposition,VMD)提取电压暂降源信号三相电压的特征向量,并进行归一化处理之后输入到构造好的IAO-SVM分类器中对样本进行训练与识别,并与K近邻、极限学习机、SVM和AO-SVM这4种分类器进行对比。仿真结果表明,在对8种电压暂降源信号分别加入0 dB、10 dB、20 dB、30 dB、40 dB、50 dB和60 dB的高斯白噪声情况下,IAO-SVM分类器识别的准确率分别为99.5%、94%、99.25%、100%、99.25%、98.5%和97.25%,其识别准确率最高,验证了在对信号加入不同的高斯白噪声时,IAO-SVM分类器均具有较高的识别准确率和抗噪声能力,有助于解决电压暂降源的分类问题。 展开更多
关键词 变分模态分解 改进天鹰优化算法 支持向量机 电压暂降源识别 奇异值熵 近似熵
下载PDF
AO算法改善波前整形技术 被引量:2
19
作者 张峻玮 张艳珠 +1 位作者 陈勇 刘义杰 《激光与红外》 CAS CSCD 北大核心 2023年第12期1908-1915,共8页
光场调控中的波前整形技术解决了相干光透过无序散射介质聚焦问题,以迭代优化方法简化实验装置,以达到加强对漫射光的控制目的。引入AO算法对入射波前进行处理,实现对波前整形技术的改善。实验中进行了与标准粒子群算法(PSO)、灰狼算法(... 光场调控中的波前整形技术解决了相干光透过无序散射介质聚焦问题,以迭代优化方法简化实验装置,以达到加强对漫射光的控制目的。引入AO算法对入射波前进行处理,实现对波前整形技术的改善。实验中进行了与标准粒子群算法(PSO)、灰狼算法(GWO)这类群体智能优化算法的比较,AO算法改善后的波前整形技术具备更佳光学聚焦能力。研究表明,与标准粒子群算法和灰狼算法相比,经过AO算法改善后波前整形技术可得到更高的目标光强值,取得更好的散斑聚焦效果。 展开更多
关键词 ao算法 波前整形 散斑聚焦 优化算法
下载PDF
基于DPSO-AO~*算法系统测试序列优化问题研究 被引量:2
20
作者 王丽丽 林海 +1 位作者 包亮 万贺 《测控技术》 2019年第5期13-17,22,共6页
为了使复杂装备信息处理系统在进行故障定位过程中耗时最少、成本最低,建立了系统测试序列优化问题的数学模型。基于DPSO-AO~*算法的改进,得到信息处理系统的最优测试策略决策树,根据信息处理系统的相关矩阵,按故障概率,随机生成故障,... 为了使复杂装备信息处理系统在进行故障定位过程中耗时最少、成本最低,建立了系统测试序列优化问题的数学模型。基于DPSO-AO~*算法的改进,得到信息处理系统的最优测试策略决策树,根据信息处理系统的相关矩阵,按故障概率,随机生成故障,采用相应的测试序列进行测试,最后利用累计测试费用进行比较,从而证明了改进的DPSO-AO~*算法正确有效。 展开更多
关键词 DPSO-ao^*算法 测试序列优化 最优测试策略决策树
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部