期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Enzymatic Synthesis of Agmatine by Immobilized Escherichia coli Cells with Arginine Decarboxylase Activity 被引量:3
1
作者 ZHANG Wei-guo ZHAO Gen-hai LIU Jun-zhong LIU Qian JIAO Qing-cai 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2011年第6期992-995,共4页
A new method for the enzymatic synthesis of agmatine by immobilized Escherichia coli cells with arginine decarboxylase(ADC) activity was established and a series of optimal reaction conditions was set down. The argi... A new method for the enzymatic synthesis of agmatine by immobilized Escherichia coli cells with arginine decarboxylase(ADC) activity was established and a series of optimal reaction conditions was set down. The arginine decarboxylase showed the maximum activity when the pyridoxal phosphate(PLP) concentration was 50 mmol/L, pH=7 and 45 °C. The arginine decarboxylase exhibited the maximum production efficiency when the substrate concentration was 100 mmol/L and the reaction time was 15 h. It was also observed that the appropriate concentration of Mg2+, especially at 0.5 mmol/L promoted the arginine decarboxylase activity; Mn2+ had little effect on the arginine decarboxylase activity. The inhibition of Cu2+ and Zn2+ to the arginine decarboxylase activity was significant. The immobilized cells were continuously used 6 times and the average conversion rate during the six-time usage was 55.6%. The immobilized cells exhibited favourable operational stability. After optimization, the maximally cumulative amount of agmatine could be up to 20 g/L. In addition, this method can also catalyze D,L-arginine to agmatine, leaving the pure optically D-arginine simultaneously. The method has a very important guiding significance to the enzymatic preparation of agmatine. 展开更多
关键词 arginine decarboxylase AGMATINE Enzymatic resolution Immobilized cell
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部