The economy of most rural locations in the semi-arid region of Llano Estacado in the southern United States is predominantly based on agriculture, primarily beef and wheat (Triticum aestivum L.) production. This regio...The economy of most rural locations in the semi-arid region of Llano Estacado in the southern United States is predominantly based on agriculture, primarily beef and wheat (Triticum aestivum L.) production. This region is prone to drought and is projected to experience a drier climate. Droughts that coincide with the critical phenological phases of a crop can be remarkably costly. Although drought cannot be prevented, its losses can be minimized through mitigation measures if it is predicted in advance. Predicting yield loss from an imminent drought is an important need of stakeholders. One way to fulfill this need is using an agricultural drought index, such as the Agricultural Reference Index for Drought (ARID). Being plant physiology-based, ARID can represent drought-yield relationships accurately. This study developed an ARID-based yield model for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to water stress. The reasonable values of the drought sensitivity coefficients of the yield model indicated that it could reflect the phenomenon of water stress decreasing the winter wheat yields in this region reasonably. The values of the various metrics used to evaluate the model, including Willmott Index (0.86), Nash-Sutcliffe Index (0.61), and percentage error (26), indicated that the yield model performed fairly well at predicting the drought-induced yield loss for winter wheat. The yield model may be useful for predicting the drought-induced yield loss for winter wheat in the study region and scheduling irrigation allocation based on phenological phase-specific drought sensitivity.展开更多
The Aral Sea Basin in Central Asia is an important geographical environment unit in the center of Eurasia.It is of great significance to the ecological protection and sustainable development of Central Asia to carry o...The Aral Sea Basin in Central Asia is an important geographical environment unit in the center of Eurasia.It is of great significance to the ecological protection and sustainable development of Central Asia to carry out dynamic monitoring and effective evaluation of the eco-environmental quality of the Aral Sea Basin.In this study,the arid remote sensing ecological index(ARSEI)for large-scale arid areas was developed,which coupled the information of the greenness index,the salinity index,the humidity index,the heat index,and the land degradation index of arid areas.The ARSEI was used to monitor and evaluate the eco-environmental quality of the Aral Sea Basin from 2000 to 2019.The results show that the greenness index,the humidity index and the land degradation index had a positive impact on the quality of the ecological environment in the Aral Sea Basin,while the salinity index and the heat index exerted a negative impact on the quality of the ecological environment.The eco-environmental quality of the Aral Sea Basin demonstrated a trend of initial improvement,followed by deterioration,and finally further improvement.The spatial variation of these changes was significant.From 2000 to 2019,grassland and wasteland(saline alkali land and sandy land)in the central and western parts of the basin had the worst ecological environment quality.The areas with poor ecological environment quality are mainly distributed in rivers,wetlands,and cultivated land around lakes.During the period from 2000 to 2019,except for the surrounding areas of the Aral Sea,the ecological environment quality in other areas of the Aral Sea Basin has been improved in general.The correlation coefficients between the change in the eco-environmental quality and the heat index and between the change in the eco-environmental quality and the humidity index were–0.593 and 0.524,respectively.Climate conditions and human activities have led to different combinations of heat and humidity changes in the eco-environmental quality of the Aral Sea Basin.However,human activities had a greater impact.The ARSEI can quantitatively and intuitively reflect the scale and causes of large-scale and long-time period changes of the eco-environmental quality in arid areas;it is very suitable for the study of the eco-environmental quality in arid areas.展开更多
Mid-western China is one of the most sensitive and fragile areas on the Earth.Evapotranspiration(ET)is a key part of hydrological cycle in these areas and is affected by both global climate change and human activities...Mid-western China is one of the most sensitive and fragile areas on the Earth.Evapotranspiration(ET)is a key part of hydrological cycle in these areas and is affected by both global climate change and human activities.The dynamic changes in ET and potential evapotranspiration(PET),which can reflect water consumption and demand,are still unclear,and there is a lack of predictive capacity on drought severity.In this study,we used global MODIS(moderate-resolution imaging spectroradiometer)terrestrial ET(MOD16)products,Morlet wavelet analysis,and simple linear regression to investigate the spatiotemporal variations of ET,PET,reference ET(ET0),and aridity index(AI)in mid-western pastoral regions of China(including Gansu Province,Qinghai Province,Ningxia Hui Autonomous Region,and part of Inner Mongolia Autonomous Region)from 2001 to 2016.The results showed that the overall ET gradually increased from east to southwest in the study area.Actual ET showed an increasing trend,whereas PET tended to decrease from 2001 to 2016.The change in ET was affected by vegetation types.During the study period,the average annual ET0 and AI tended to decrease.At the monthly scale within a year,AI value decreased from January to July and then increased.The interannual variations of ET0 and AI showed periodicity with a main period of 14 a,and two other periodicities of 11 and 5 a.This study showed that in recent years,drought in these pastoral regions of mid-western China has been alleviated.Therefore,it is foreseeable that the demand for irrigation water for agricultural production in these regions will decrease.展开更多
Rainfall and evapotranspiration are two vital elements for food production under rainfed agriculture. This study aims at investigating the combined changes in these variables in the form of aridly index in the souther...Rainfall and evapotranspiration are two vital elements for food production under rainfed agriculture. This study aims at investigating the combined changes in these variables in the form of aridly index in the southern Senegal. The temporal trends in annual and monthly (from May to October) aridity index, rainfall and evapotranspiration are examined and adaptation strategies to the vulnerability of rainfed rice cultivation to the changes are developed. The results show a significant decreasing trend in annual rainfall at all study locations for the period 1922-2015. When analyzing the trends in sub-periods, there are two clear patterns in the annual rainfall series: a decreasing trend for the period 1922-1979 and a reversal increasing trend for the period 1980-2015. An increasing trend is also observed in annual reference evapotranspiration. The results reveal that the region will be drier with a significant increase in aridity at the annual and most monthly series. Appropriate adaptation strategies should be implemented to diminish the adverse influence of the increasing aridity on rice productivity for a sustainable agriculture.展开更多
Aim to linking the variability of drought in northwest China to the oceanic influence of North Atlantic SSTs at the background of global warming and at the regional climate change shifting stages, year aridity index v...Aim to linking the variability of drought in northwest China to the oceanic influence of North Atlantic SSTs at the background of global warming and at the regional climate change shifting stages, year aridity index variations in northwest China and summer North Atlantic sea surface temperature (SST) variations are examined for the 44 a period of 1961-2004 using singular value decomposition (SVD) analysis. Results show that the SST anomalies (SSTA)in the North Atlantic in summer reflected three basic models. The first SVD mode of SST pattern shows a dipole - like variation with the positive center located at southwest and negative center at northeast of extratropical North Atlantic. And it strongly relates to the positive trend in AI variation in northwest China. The second coupled modes display the coherent positive anomalies in extratropical North Atlantic SST and the marked opposite trend of AI variability between north and south of Xinjiang. In addition, the lag correlation analysis of the first mode of SSTA and geopotential heights at 500 hPa variations also shows that the indication of the former influencing the latter configuration, which result in higher air temperature and less precipitation when the SSTA in the North Atlantic Ocean in summer motivated Eurasian circulation of EA pattern, further to influence the wet - dry variations in northwest China by the ocean-to - atmosphere forcing.展开更多
As an important factor that directly affects agricultural production, the social economy, and policy implementation,observed changes in dry/wet conditions have become a matter of widespread concern. However, previous ...As an important factor that directly affects agricultural production, the social economy, and policy implementation,observed changes in dry/wet conditions have become a matter of widespread concern. However, previous research has mainly focused on the long-term linear changes of dry/wet conditions, while the detection and evolution of the non-linear trends related to dry/wet changes have received less attention. The non-linear trends of the annual aridity index, obtained by the Ensemble Empirical Mode Decomposition(EEMD) method, reveal that changes in dry/wet conditions in China are asymmetric and can be characterized by contrasting features in both time and space in China. Spatially, most areas in western China have experienced transitions from drying to wetting, while opposite changes have occurred in most areas of eastern China. Temporally, the transitions occurred earlier in western China compared to eastern China. Research into the asymmetric spatial characteristics of dry/wet conditions compensates for the inadequacies of previous studies, which focused solely on temporal evolution;at the same time, it remedies the inadequacies of traditional research on linear trends over centennial timescales. Analyzing the non-linear trend also provides for a more comprehensive understanding of the drying/wetting changes in China.展开更多
为揭示半干旱草原露天矿区生态环境质量状况,分离矿区人类活动生态累积效应并识别其演变态势,在厘清矿区生态累积效应概念的基础上,构建适用于半干旱草原的露天矿区生态环境质量评估指数(Surface Mining Areas Eco-environmental Evalua...为揭示半干旱草原露天矿区生态环境质量状况,分离矿区人类活动生态累积效应并识别其演变态势,在厘清矿区生态累积效应概念的基础上,构建适用于半干旱草原的露天矿区生态环境质量评估指数(Surface Mining Areas Eco-environmental Evaluation Index,SMAEEI)以及矿区生态累积效应定量评估模型。选取内蒙古胜利矿区为研究区,量化分析1986—2020年区域生态环境质量和生态累积效应的时空分布规律,以及主要人类活动的生态累积效应差异。结果表明:①SMAEEI适用于半干旱草原露天矿区,能客观呈现各地类生态环境质量高低顺序。35 a间研究区生态环境质量呈极显著下降趋势,且其空间差异显著减弱。露天矿场、城镇扩张区、锡林河湿地及北侧草地生态环境质量出现极显著、显著的退化趋势。②半干旱草原露天矿区生态累积效应定量评估模型能剔除气候因素对生态系统的耦合影响,分离并量化人类活动对矿区生态系统的累积效应,揭示累积的方向、程度和空间范围。35 a间研究区生态服务价值累积量(Change of Ecosystem Service Value Cumulant,COESVC)共减少1186157.03万元,出现负向生态累积效应,生态系统服务功能下降。高度、中度负向累积区集中在湿地和草地退化区、城镇区、露天矿场。③露天开采、城镇建设造成的单位面积负向生态累积效应最明显,前者在单位时间内带来的负向累积变化最剧烈,后者负向累积效应的局部影响程度和偏离度最大;放牧活动引起的负向生态累积效应影响范围最广、总量最大,但局部影响程度最小,生态系统服务功能较其余人类活动更稳定。研究成果可将矿区人类活动引起的生态环境实物量变动转化为价值量描述,为采用货币形式测算矿区生产生活行为的环境损害成本提供可行方法。展开更多
The most significant changes of landscape in a certain period are landscape area changes and spatial changes of landscape patches.Based on transfer matrix and total amount change of landscape area,landscape space tran...The most significant changes of landscape in a certain period are landscape area changes and spatial changes of landscape patches.Based on transfer matrix and total amount change of landscape area,landscape space transfer index and landscape area change index were established,and then applied to analyze plain oasis and desert in Yutian County,Xinjiang Uyghur Nationality Autonomous Region,the results showed that landscape space transfer in this region was drastic,but total landscape area changed only slightly,thus space transfer index was much higher than area change index,which indicated that landscapes in arid area were given with particular spatial undulant features and sensitivity,while man-made landscapes(artificial oasis) are stable and expanding to some extent.With landscape space transfer index as the comprehensive indicator,space transfer intensity of landscape within a certain period can be demonstrated,which is favorable for the comparison of landscape change intensity among different types and within different periods,in addition,some macroscopic change features of landscapes can also be reflected by comprehensively analyzing landscape space transfer index and landscape area change index.展开更多
Wheat (Triticum aestivum L.) production is a major economic activity in most regional and rural areas in the Southern Plains, a semi-arid region of the United States. This region is vulnerable to drought and is projec...Wheat (Triticum aestivum L.) production is a major economic activity in most regional and rural areas in the Southern Plains, a semi-arid region of the United States. This region is vulnerable to drought and is projected to experience a drier climate in the future. Since the interannual variability in climate in this region is linked to an ocean-atmospheric phenomenon, called El Niño-Southern Oscillation (ENSO), droughts in this region may be associated with ENSO. Droughts that occur during the critical growth phases of wheat can be extremely costly. However, the losses due to an impending drought can be minimized through mitigation measures if it is predicted in advance. Predicting the yield loss from an imminent drought is crucial for stakeholders. One of the reliable ways for such prediction is using a plant physiology-based agricultural drought index, such as Agricultural Reference Index for Drought (ARID). This study developed ENSO phase-specific, ARID-based models for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to drought. The reasonable values of the drought sensitivity coefficients of the yield model for each ENSO phase (El Niño, La Niña, or Neutral) indicated that the yield models reflected reasonably well the phenomena of water stress decreasing the winter wheat yields in this region during different ENSO phases. The values of various goodness-of-fit measures used, including the Nash-Sutcliffe Index (0.54 to 0.67), the Willmott Index (0.82 to 0.89), and the percentage error (20 to 26), indicated that the yield models performed fairly well at predicting the ENSO phase-specific loss of wheat yields from drought. This yield model may be useful for predicting yield loss from drought and scheduling irrigation allocation based on the phenological phase-specific sensitivity to drought as impacted by ENSO.展开更多
The climate data of 84 meteorological stations in Guizhou from 1981 to 2010 was used,including the statistical data of daily precipitation,temperature,sunshine hours,evaporation,frost free period and so on. Using the ...The climate data of 84 meteorological stations in Guizhou from 1981 to 2010 was used,including the statistical data of daily precipitation,temperature,sunshine hours,evaporation,frost free period and so on. Using the equations of light and heat coefficient,light and heat index,latitude and temperature index,active accumulated temperature,effective accumulated temperature,aridity index,and arid-wet index,the red cartridge kiwifruit zoning index of Guizhou was analyzed and studied. The results showed that the zoning index system for the climatic characteristics of Guizhou mountainous area must be established in order to realize the variety regionalization of red cartridge kiwifruit in Guizhou mountainous area,and ten climatic factors were taken as climatic zoning indexes of red cartridge kiwifruit planting,including active accumulated temperature,effective accumulated temperature,annual average temperature,average temperature of July,light and heat coefficient,light and heat index,latitude and temperature index,frost free period,aridity index and arid-wet index. These indicators were giving a comprehensive evaluation for climate suitability conditions of red cartridge kiwifruit planting,and providing the scientific and reasonable basis for the promotion planting of red cartridge kiwifruit in mountain area of Guizhou.展开更多
Based on the data of monthly precipitation and other monthly meteorological elements of 661 meteorological stations over China from 1961 to 2013, the temporal evolution characteristics of aridity in Hetao area of Nort...Based on the data of monthly precipitation and other monthly meteorological elements of 661 meteorological stations over China from 1961 to 2013, the temporal evolution characteristics of aridity in Hetao area of North China which is drying significantly were studied by using REOF, and the effects of summer monsoon and meteorological factors on the aridity index were discussed. The results showed that climatic aridity in Hetac area of North China tended to increase with time during 1961 -2013. The annual variation and overall trend of climatic aridity in Hetao area of North China was mainly influenced by /SASM1 before the 1990s, and the degree of the influence weakened with global warming. There were certain differ- ences between annual and decadal variations in the effects of the meteorological elements on climatic aridity. The impact of the thermal factors on aridity index was more significant than the dynamic factor after the 1990s, revealing that climate warming aggravated climatic aridity in Hetao area of North China.展开更多
文摘The economy of most rural locations in the semi-arid region of Llano Estacado in the southern United States is predominantly based on agriculture, primarily beef and wheat (Triticum aestivum L.) production. This region is prone to drought and is projected to experience a drier climate. Droughts that coincide with the critical phenological phases of a crop can be remarkably costly. Although drought cannot be prevented, its losses can be minimized through mitigation measures if it is predicted in advance. Predicting yield loss from an imminent drought is an important need of stakeholders. One way to fulfill this need is using an agricultural drought index, such as the Agricultural Reference Index for Drought (ARID). Being plant physiology-based, ARID can represent drought-yield relationships accurately. This study developed an ARID-based yield model for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to water stress. The reasonable values of the drought sensitivity coefficients of the yield model indicated that it could reflect the phenomenon of water stress decreasing the winter wheat yields in this region reasonably. The values of the various metrics used to evaluate the model, including Willmott Index (0.86), Nash-Sutcliffe Index (0.61), and percentage error (26), indicated that the yield model performed fairly well at predicting the drought-induced yield loss for winter wheat. The yield model may be useful for predicting the drought-induced yield loss for winter wheat in the study region and scheduling irrigation allocation based on phenological phase-specific drought sensitivity.
基金This work was funded by the National Natural Science Foundation of China(U1603242)the Major Science and Technology Projects in Inner Mongolia,China(ZDZX2018054).
文摘The Aral Sea Basin in Central Asia is an important geographical environment unit in the center of Eurasia.It is of great significance to the ecological protection and sustainable development of Central Asia to carry out dynamic monitoring and effective evaluation of the eco-environmental quality of the Aral Sea Basin.In this study,the arid remote sensing ecological index(ARSEI)for large-scale arid areas was developed,which coupled the information of the greenness index,the salinity index,the humidity index,the heat index,and the land degradation index of arid areas.The ARSEI was used to monitor and evaluate the eco-environmental quality of the Aral Sea Basin from 2000 to 2019.The results show that the greenness index,the humidity index and the land degradation index had a positive impact on the quality of the ecological environment in the Aral Sea Basin,while the salinity index and the heat index exerted a negative impact on the quality of the ecological environment.The eco-environmental quality of the Aral Sea Basin demonstrated a trend of initial improvement,followed by deterioration,and finally further improvement.The spatial variation of these changes was significant.From 2000 to 2019,grassland and wasteland(saline alkali land and sandy land)in the central and western parts of the basin had the worst ecological environment quality.The areas with poor ecological environment quality are mainly distributed in rivers,wetlands,and cultivated land around lakes.During the period from 2000 to 2019,except for the surrounding areas of the Aral Sea,the ecological environment quality in other areas of the Aral Sea Basin has been improved in general.The correlation coefficients between the change in the eco-environmental quality and the heat index and between the change in the eco-environmental quality and the humidity index were–0.593 and 0.524,respectively.Climate conditions and human activities have led to different combinations of heat and humidity changes in the eco-environmental quality of the Aral Sea Basin.However,human activities had a greater impact.The ARSEI can quantitatively and intuitively reflect the scale and causes of large-scale and long-time period changes of the eco-environmental quality in arid areas;it is very suitable for the study of the eco-environmental quality in arid areas.
基金This work was supported by the earmarked fund for China Agriculture Research System of Ministry of Finance and Ministry of Agriculture and Rural Affairs(CARS-34)the National Key Research and Development Program of China(2016YFC0400302).
文摘Mid-western China is one of the most sensitive and fragile areas on the Earth.Evapotranspiration(ET)is a key part of hydrological cycle in these areas and is affected by both global climate change and human activities.The dynamic changes in ET and potential evapotranspiration(PET),which can reflect water consumption and demand,are still unclear,and there is a lack of predictive capacity on drought severity.In this study,we used global MODIS(moderate-resolution imaging spectroradiometer)terrestrial ET(MOD16)products,Morlet wavelet analysis,and simple linear regression to investigate the spatiotemporal variations of ET,PET,reference ET(ET0),and aridity index(AI)in mid-western pastoral regions of China(including Gansu Province,Qinghai Province,Ningxia Hui Autonomous Region,and part of Inner Mongolia Autonomous Region)from 2001 to 2016.The results showed that the overall ET gradually increased from east to southwest in the study area.Actual ET showed an increasing trend,whereas PET tended to decrease from 2001 to 2016.The change in ET was affected by vegetation types.During the study period,the average annual ET0 and AI tended to decrease.At the monthly scale within a year,AI value decreased from January to July and then increased.The interannual variations of ET0 and AI showed periodicity with a main period of 14 a,and two other periodicities of 11 and 5 a.This study showed that in recent years,drought in these pastoral regions of mid-western China has been alleviated.Therefore,it is foreseeable that the demand for irrigation water for agricultural production in these regions will decrease.
文摘Rainfall and evapotranspiration are two vital elements for food production under rainfed agriculture. This study aims at investigating the combined changes in these variables in the form of aridly index in the southern Senegal. The temporal trends in annual and monthly (from May to October) aridity index, rainfall and evapotranspiration are examined and adaptation strategies to the vulnerability of rainfed rice cultivation to the changes are developed. The results show a significant decreasing trend in annual rainfall at all study locations for the period 1922-2015. When analyzing the trends in sub-periods, there are two clear patterns in the annual rainfall series: a decreasing trend for the period 1922-1979 and a reversal increasing trend for the period 1980-2015. An increasing trend is also observed in annual reference evapotranspiration. The results reveal that the region will be drier with a significant increase in aridity at the annual and most monthly series. Appropriate adaptation strategies should be implemented to diminish the adverse influence of the increasing aridity on rice productivity for a sustainable agriculture.
基金The National Natural Science Foundation of China under contract No.904110017
文摘Aim to linking the variability of drought in northwest China to the oceanic influence of North Atlantic SSTs at the background of global warming and at the regional climate change shifting stages, year aridity index variations in northwest China and summer North Atlantic sea surface temperature (SST) variations are examined for the 44 a period of 1961-2004 using singular value decomposition (SVD) analysis. Results show that the SST anomalies (SSTA)in the North Atlantic in summer reflected three basic models. The first SVD mode of SST pattern shows a dipole - like variation with the positive center located at southwest and negative center at northeast of extratropical North Atlantic. And it strongly relates to the positive trend in AI variation in northwest China. The second coupled modes display the coherent positive anomalies in extratropical North Atlantic SST and the marked opposite trend of AI variability between north and south of Xinjiang. In addition, the lag correlation analysis of the first mode of SSTA and geopotential heights at 500 hPa variations also shows that the indication of the former influencing the latter configuration, which result in higher air temperature and less precipitation when the SSTA in the North Atlantic Ocean in summer motivated Eurasian circulation of EA pattern, further to influence the wet - dry variations in northwest China by the ocean-to - atmosphere forcing.
基金supported by the National key research and development program (2019YFA0607104)National Natural Science Foundation of China (Grant Nos. 41991231, 42275034, 41975076, 42075029, 42075017, and 42075018)the Gansu Provincial Science and Technology Project (22JR5RA405)。
文摘As an important factor that directly affects agricultural production, the social economy, and policy implementation,observed changes in dry/wet conditions have become a matter of widespread concern. However, previous research has mainly focused on the long-term linear changes of dry/wet conditions, while the detection and evolution of the non-linear trends related to dry/wet changes have received less attention. The non-linear trends of the annual aridity index, obtained by the Ensemble Empirical Mode Decomposition(EEMD) method, reveal that changes in dry/wet conditions in China are asymmetric and can be characterized by contrasting features in both time and space in China. Spatially, most areas in western China have experienced transitions from drying to wetting, while opposite changes have occurred in most areas of eastern China. Temporally, the transitions occurred earlier in western China compared to eastern China. Research into the asymmetric spatial characteristics of dry/wet conditions compensates for the inadequacies of previous studies, which focused solely on temporal evolution;at the same time, it remedies the inadequacies of traditional research on linear trends over centennial timescales. Analyzing the non-linear trend also provides for a more comprehensive understanding of the drying/wetting changes in China.
文摘为揭示半干旱草原露天矿区生态环境质量状况,分离矿区人类活动生态累积效应并识别其演变态势,在厘清矿区生态累积效应概念的基础上,构建适用于半干旱草原的露天矿区生态环境质量评估指数(Surface Mining Areas Eco-environmental Evaluation Index,SMAEEI)以及矿区生态累积效应定量评估模型。选取内蒙古胜利矿区为研究区,量化分析1986—2020年区域生态环境质量和生态累积效应的时空分布规律,以及主要人类活动的生态累积效应差异。结果表明:①SMAEEI适用于半干旱草原露天矿区,能客观呈现各地类生态环境质量高低顺序。35 a间研究区生态环境质量呈极显著下降趋势,且其空间差异显著减弱。露天矿场、城镇扩张区、锡林河湿地及北侧草地生态环境质量出现极显著、显著的退化趋势。②半干旱草原露天矿区生态累积效应定量评估模型能剔除气候因素对生态系统的耦合影响,分离并量化人类活动对矿区生态系统的累积效应,揭示累积的方向、程度和空间范围。35 a间研究区生态服务价值累积量(Change of Ecosystem Service Value Cumulant,COESVC)共减少1186157.03万元,出现负向生态累积效应,生态系统服务功能下降。高度、中度负向累积区集中在湿地和草地退化区、城镇区、露天矿场。③露天开采、城镇建设造成的单位面积负向生态累积效应最明显,前者在单位时间内带来的负向累积变化最剧烈,后者负向累积效应的局部影响程度和偏离度最大;放牧活动引起的负向生态累积效应影响范围最广、总量最大,但局部影响程度最小,生态系统服务功能较其余人类活动更稳定。研究成果可将矿区人类活动引起的生态环境实物量变动转化为价值量描述,为采用货币形式测算矿区生产生活行为的环境损害成本提供可行方法。
基金Supported by National Natural Science Foundation(40661002)Project of National Natural Science Youth Foundation(40701188)Highlevel Talents Initiation Project of Shihezi University(RCZX200693)~~
文摘The most significant changes of landscape in a certain period are landscape area changes and spatial changes of landscape patches.Based on transfer matrix and total amount change of landscape area,landscape space transfer index and landscape area change index were established,and then applied to analyze plain oasis and desert in Yutian County,Xinjiang Uyghur Nationality Autonomous Region,the results showed that landscape space transfer in this region was drastic,but total landscape area changed only slightly,thus space transfer index was much higher than area change index,which indicated that landscapes in arid area were given with particular spatial undulant features and sensitivity,while man-made landscapes(artificial oasis) are stable and expanding to some extent.With landscape space transfer index as the comprehensive indicator,space transfer intensity of landscape within a certain period can be demonstrated,which is favorable for the comparison of landscape change intensity among different types and within different periods,in addition,some macroscopic change features of landscapes can also be reflected by comprehensively analyzing landscape space transfer index and landscape area change index.
文摘Wheat (Triticum aestivum L.) production is a major economic activity in most regional and rural areas in the Southern Plains, a semi-arid region of the United States. This region is vulnerable to drought and is projected to experience a drier climate in the future. Since the interannual variability in climate in this region is linked to an ocean-atmospheric phenomenon, called El Niño-Southern Oscillation (ENSO), droughts in this region may be associated with ENSO. Droughts that occur during the critical growth phases of wheat can be extremely costly. However, the losses due to an impending drought can be minimized through mitigation measures if it is predicted in advance. Predicting the yield loss from an imminent drought is crucial for stakeholders. One of the reliable ways for such prediction is using a plant physiology-based agricultural drought index, such as Agricultural Reference Index for Drought (ARID). This study developed ENSO phase-specific, ARID-based models for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to drought. The reasonable values of the drought sensitivity coefficients of the yield model for each ENSO phase (El Niño, La Niña, or Neutral) indicated that the yield models reflected reasonably well the phenomena of water stress decreasing the winter wheat yields in this region during different ENSO phases. The values of various goodness-of-fit measures used, including the Nash-Sutcliffe Index (0.54 to 0.67), the Willmott Index (0.82 to 0.89), and the percentage error (20 to 26), indicated that the yield models performed fairly well at predicting the ENSO phase-specific loss of wheat yields from drought. This yield model may be useful for predicting yield loss from drought and scheduling irrigation allocation based on the phenological phase-specific sensitivity to drought as impacted by ENSO.
基金Supported by Innovation Driven Project of China Association for Science(2017ZLGC004)Provincial and Municipal Scientific and Technological Cooperation Projects(52020-2015-01-02)Guizhou Science and Technology Plan Project(Qiankehe NY[2012]3020)
文摘The climate data of 84 meteorological stations in Guizhou from 1981 to 2010 was used,including the statistical data of daily precipitation,temperature,sunshine hours,evaporation,frost free period and so on. Using the equations of light and heat coefficient,light and heat index,latitude and temperature index,active accumulated temperature,effective accumulated temperature,aridity index,and arid-wet index,the red cartridge kiwifruit zoning index of Guizhou was analyzed and studied. The results showed that the zoning index system for the climatic characteristics of Guizhou mountainous area must be established in order to realize the variety regionalization of red cartridge kiwifruit in Guizhou mountainous area,and ten climatic factors were taken as climatic zoning indexes of red cartridge kiwifruit planting,including active accumulated temperature,effective accumulated temperature,annual average temperature,average temperature of July,light and heat coefficient,light and heat index,latitude and temperature index,frost free period,aridity index and arid-wet index. These indicators were giving a comprehensive evaluation for climate suitability conditions of red cartridge kiwifruit planting,and providing the scientific and reasonable basis for the promotion planting of red cartridge kiwifruit in mountain area of Guizhou.
基金Supported by the State Key Development Program for Basic Research of China(2013CB430200)
文摘Based on the data of monthly precipitation and other monthly meteorological elements of 661 meteorological stations over China from 1961 to 2013, the temporal evolution characteristics of aridity in Hetao area of North China which is drying significantly were studied by using REOF, and the effects of summer monsoon and meteorological factors on the aridity index were discussed. The results showed that climatic aridity in Hetac area of North China tended to increase with time during 1961 -2013. The annual variation and overall trend of climatic aridity in Hetao area of North China was mainly influenced by /SASM1 before the 1990s, and the degree of the influence weakened with global warming. There were certain differ- ences between annual and decadal variations in the effects of the meteorological elements on climatic aridity. The impact of the thermal factors on aridity index was more significant than the dynamic factor after the 1990s, revealing that climate warming aggravated climatic aridity in Hetao area of North China.