This paper proposes a joint limiting control strategy for suppressing DC fault current and arm current in modular multilevel converter-based high-voltage direct current(MMC-HVDC) systems, which includes two target-ori...This paper proposes a joint limiting control strategy for suppressing DC fault current and arm current in modular multilevel converter-based high-voltage direct current(MMC-HVDC) systems, which includes two target-oriented current limiting controls. To limit the DC fault current in the early fault stage, an equivalent modular multilevel converter(MMC) impedance is obtained, and its high-frequency part is reshaped by introducing virtual impedance, which is realized by adjusting the inserted submodules adaptively. Following the analysis of MMC control characteristics, the arm current limiting strategy is investigated, with results showing that the inner-loop control has significant effects on arm current and that a simple low-pass filter can reduce the arm current in the fault period. Finally, by combining the virtual impedance shaping and innerloop control, the fault currents of DC lines and MMC arms can be suppressed simultaneously, which can not only alleviate the interrupting pressure of the DC circuit breaker, but also prevent the MMC from being blocked by the arm overcurrent. Theoretical analysis conclusions and the proposed strategy are verified offline by a digital time-domain simulation on Power Systems Computer Aided Design/Electromagnetic Transients including DC platform, and experiment on a real-time digital simulator platform.展开更多
Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the p...Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF(User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine.展开更多
A five leg inverter (FLI) control is incorporated to drive two independent rated permanent magnet synchronous motors (PMSMs) for automotive applications. Literature evidences many attempts of employing the FLI for con...A five leg inverter (FLI) control is incorporated to drive two independent rated permanent magnet synchronous motors (PMSMs) for automotive applications. Literature evidences many attempts of employing the FLI for controlling two general purpose/special motors, where variety of modulation techniques has been practiced for performance enhancement. Also in these cases one leg of inverter is common to both the motors. The expanded two arm modulation (ETAM) has been generally engaged in FLI. In ETAM the percentage voltage utilization factor (VUF) is calculated based on “α<sub>max</sub>”, where “α<sub>max</sub>” is the maximum modulation index and equal to and hence it restricts the VUF to 50%. This makes the FLI drives to use the dc link in inefficient way, which is due to the fact that conventional ETAM works with voltage reference. This paper modifies the ETAM in an ingenious way to improve the VUF further through current reference. In addition, the developed current reference expanded two arm modulation (CRETAM) minimizes the current harmonics and torque ripple as well. A detailed comparison of the CRETAM with the conventional ETAM and the competent digital counterpart, space vector pulse width modulation (SVPWM), is also presented. The enhancement in VUF, torque ripple minimization and current total harmonic distortion (THD) reduction are found in the MATLAB based simulation results.展开更多
基于模块化多电平变换器的固态变压器(modular multilevel converter based solid state transformer,MMC-SST)是实现交直流混合配电网柔性互联及能量多向流动的关键装备。针对固态变压器输入级MMC子模块电容纹波电压过大,导致装置的体...基于模块化多电平变换器的固态变压器(modular multilevel converter based solid state transformer,MMC-SST)是实现交直流混合配电网柔性互联及能量多向流动的关键装备。针对固态变压器输入级MMC子模块电容纹波电压过大,导致装置的体积和成本增加的问题,提出一种基于比例重复控制的MMC-SST改进纹波电压抑制策略。首先利用基于比例重复控制的电容电压闭环得到调整后的功率移相角。然后,通过双有源桥变换器将子模块电容纹波功率传递到低压直流母线,从而有效抑制MMC子模块的各频次纹波电压,达到减小电容值的目的。最后,仿真结果表明在网侧电压对称或不对称工况下,基于比例重复控制的MMC-SST子模块电容纹波电压抑制策略均具有良好的纹波电压抑制能力。展开更多
基金supported in part by the Fundamental Research Funds for the Central Universities (No.2022SCU12005)the General Project of Natural Science Foundation of Sichuan Province (No.2022NSFSC0262)。
文摘This paper proposes a joint limiting control strategy for suppressing DC fault current and arm current in modular multilevel converter-based high-voltage direct current(MMC-HVDC) systems, which includes two target-oriented current limiting controls. To limit the DC fault current in the early fault stage, an equivalent modular multilevel converter(MMC) impedance is obtained, and its high-frequency part is reshaped by introducing virtual impedance, which is realized by adjusting the inserted submodules adaptively. Following the analysis of MMC control characteristics, the arm current limiting strategy is investigated, with results showing that the inner-loop control has significant effects on arm current and that a simple low-pass filter can reduce the arm current in the fault period. Finally, by combining the virtual impedance shaping and innerloop control, the fault currents of DC lines and MMC arms can be suppressed simultaneously, which can not only alleviate the interrupting pressure of the DC circuit breaker, but also prevent the MMC from being blocked by the arm overcurrent. Theoretical analysis conclusions and the proposed strategy are verified offline by a digital time-domain simulation on Power Systems Computer Aided Design/Electromagnetic Transients including DC platform, and experiment on a real-time digital simulator platform.
基金financially supported by the State Oceanic Administration of China(Grant No.GHME2011CL01)the Program of State Key Laboratory of Coastal and Offshore Engineering(Grant No.LP1102)
文摘Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF(User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine.
文摘A five leg inverter (FLI) control is incorporated to drive two independent rated permanent magnet synchronous motors (PMSMs) for automotive applications. Literature evidences many attempts of employing the FLI for controlling two general purpose/special motors, where variety of modulation techniques has been practiced for performance enhancement. Also in these cases one leg of inverter is common to both the motors. The expanded two arm modulation (ETAM) has been generally engaged in FLI. In ETAM the percentage voltage utilization factor (VUF) is calculated based on “α<sub>max</sub>”, where “α<sub>max</sub>” is the maximum modulation index and equal to and hence it restricts the VUF to 50%. This makes the FLI drives to use the dc link in inefficient way, which is due to the fact that conventional ETAM works with voltage reference. This paper modifies the ETAM in an ingenious way to improve the VUF further through current reference. In addition, the developed current reference expanded two arm modulation (CRETAM) minimizes the current harmonics and torque ripple as well. A detailed comparison of the CRETAM with the conventional ETAM and the competent digital counterpart, space vector pulse width modulation (SVPWM), is also presented. The enhancement in VUF, torque ripple minimization and current total harmonic distortion (THD) reduction are found in the MATLAB based simulation results.
文摘基于模块化多电平变换器的固态变压器(modular multilevel converter based solid state transformer,MMC-SST)是实现交直流混合配电网柔性互联及能量多向流动的关键装备。针对固态变压器输入级MMC子模块电容纹波电压过大,导致装置的体积和成本增加的问题,提出一种基于比例重复控制的MMC-SST改进纹波电压抑制策略。首先利用基于比例重复控制的电容电压闭环得到调整后的功率移相角。然后,通过双有源桥变换器将子模块电容纹波功率传递到低压直流母线,从而有效抑制MMC子模块的各频次纹波电压,达到减小电容值的目的。最后,仿真结果表明在网侧电压对称或不对称工况下,基于比例重复控制的MMC-SST子模块电容纹波电压抑制策略均具有良好的纹波电压抑制能力。