This paper proposes a method on analyzing the asynchronism-synchronism of precipitation of different hydrological regions regarding the S-to-N water transfer areas of eastern China. The general process of the analysis...This paper proposes a method on analyzing the asynchronism-synchronism of precipitation of different hydrological regions regarding the S-to-N water transfer areas of eastern China. The general process of the analysis includes three steps. Firstly, we created the rainfall series of the region concerned by calculating the regional average rainfall of the stations in the area with the help of the classical Thiessen Polygon method. Secondly, the standards of assessment indices for wetness or dryness are set according to Gamma distribution function with a certain probability P 37.5% or 62.5% given respectively. Finally, the frequency of nine combinations are counted as the quantitative feature of asynchronism and synchronism in three time scales, that is the yearly, seasonal and monthly scales. The asynchronism-synchronism of two region pairs has been estimated. The results show that the frequency of precipitation asynchronism in 1957–1998 is larger than the synchronism frequency for both the North China-middle and lower Yangtze River pair and for the North China-upper Hanjiang River pair. As for the synchronism phenomena, the frequency of Nd?Sd is rather low. As the combinations that are suitable for water transfers are Nd?Sw, Nn?Sw, Nd?Sn and Nn?Sn, the total frequency of these combinations for North China-middle and lower Yangtze River is 40% on an annual basis, but only 28% in spring when water shortages are most likely to occur. The total frequency of these combinations for North China-upper Hanjiang River is about 24% on an annual basis, but 35% in spring and winter. It should be noted that if future precipitation patterns are similar to that of the period 1957–1998, it is very important to change the natural character of asynchronism-synchronism by enhancing the capability of hydro-projects regulation and improving management of the water transfer project.展开更多
基金Key Project of Chinese Academy of Sciences, No. KZ951-A1-203-01
文摘This paper proposes a method on analyzing the asynchronism-synchronism of precipitation of different hydrological regions regarding the S-to-N water transfer areas of eastern China. The general process of the analysis includes three steps. Firstly, we created the rainfall series of the region concerned by calculating the regional average rainfall of the stations in the area with the help of the classical Thiessen Polygon method. Secondly, the standards of assessment indices for wetness or dryness are set according to Gamma distribution function with a certain probability P 37.5% or 62.5% given respectively. Finally, the frequency of nine combinations are counted as the quantitative feature of asynchronism and synchronism in three time scales, that is the yearly, seasonal and monthly scales. The asynchronism-synchronism of two region pairs has been estimated. The results show that the frequency of precipitation asynchronism in 1957–1998 is larger than the synchronism frequency for both the North China-middle and lower Yangtze River pair and for the North China-upper Hanjiang River pair. As for the synchronism phenomena, the frequency of Nd?Sd is rather low. As the combinations that are suitable for water transfers are Nd?Sw, Nn?Sw, Nd?Sn and Nn?Sn, the total frequency of these combinations for North China-middle and lower Yangtze River is 40% on an annual basis, but only 28% in spring when water shortages are most likely to occur. The total frequency of these combinations for North China-upper Hanjiang River is about 24% on an annual basis, but 35% in spring and winter. It should be noted that if future precipitation patterns are similar to that of the period 1957–1998, it is very important to change the natural character of asynchronism-synchronism by enhancing the capability of hydro-projects regulation and improving management of the water transfer project.