Carbon-based dual-metal sites catalysts(DMSCs)have emerged as a new frontier in the field of sustainable energy due to their unique coordination environments,electronic structure,the maximized atom utilization.The rea...Carbon-based dual-metal sites catalysts(DMSCs)have emerged as a new frontier in the field of sustainable energy due to their unique coordination environments,electronic structure,the maximized atom utilization.The reasonable utilization of carbonbased DMSCs provides new possibilities to achieve the outstanding catalytic performance,remarkable selectivity,recyclability in energy-related catalysis.Based on this,this review intends to summarize the recent breakthroughs in carbonbased DMSCs for the energy catalysis.Firstly,the definition and classifications of DMSCs are proposed,mainly dividing into three types(isolated dual-metal site pairs,binuclear homologous dual-metal sites pairs,binuclear heterologous dual-metal sites pairs).Subsequently,we discuss the potential of DMSCs targeting on energy conversion reactions,such as electrocatalytic hydrogen evolution reaction(HER),oxygen evolution reaction(OER),oxygen reduction reaction(ORR),CO_(2)reduction reaction(CO_(2)RR),N_(2) reduction reaction(NRR).Finally,we predict the remaining challenges and possible opportunities on the unique carbon-based DMSCs for energy applications in the future.展开更多
Fano-like quantum routing of single photons in a system with two waveguides coupled to two collocated atoms is investigated theoretically. Using a full quantum theory in real space, photonic scattering amplitudes alon...Fano-like quantum routing of single photons in a system with two waveguides coupled to two collocated atoms is investigated theoretically. Using a full quantum theory in real space, photonic scattering amplitudes along four ports of the waveguide network are analytically obtained. It is shown that, by adjusting the atomic dipole-dipole interaction, an evident Fano-line shape emerges in the scattering spectra of the single-dot configuration system. Moreover, Fano resonance can also be achieved by varying the atom-waveguide coupling strength and atomic detuning, in the presence of the atomic dipole-dipole interaction. Therefore, the atomic dipole-dipole interaction may be utilized as a possible way to control spectral Fano-like resonance. The feasibility with the experimental waveguide channels is also discussed.展开更多
基金the National Natural Science Foundation of China(Nos.22201262 and 52201261)the Natural Science Foundation of Henan Province(No.222300420290)the China Postdoctoral Science Foundation(No.2021M702939).
文摘Carbon-based dual-metal sites catalysts(DMSCs)have emerged as a new frontier in the field of sustainable energy due to their unique coordination environments,electronic structure,the maximized atom utilization.The reasonable utilization of carbonbased DMSCs provides new possibilities to achieve the outstanding catalytic performance,remarkable selectivity,recyclability in energy-related catalysis.Based on this,this review intends to summarize the recent breakthroughs in carbonbased DMSCs for the energy catalysis.Firstly,the definition and classifications of DMSCs are proposed,mainly dividing into three types(isolated dual-metal site pairs,binuclear homologous dual-metal sites pairs,binuclear heterologous dual-metal sites pairs).Subsequently,we discuss the potential of DMSCs targeting on energy conversion reactions,such as electrocatalytic hydrogen evolution reaction(HER),oxygen evolution reaction(OER),oxygen reduction reaction(ORR),CO_(2)reduction reaction(CO_(2)RR),N_(2) reduction reaction(NRR).Finally,we predict the remaining challenges and possible opportunities on the unique carbon-based DMSCs for energy applications in the future.
基金Supported by the National Natural Science Foundation of China under Grant No 11247032the Natural Science Foundation of Jiangxi Province under Grant Nos 20151BAB202012 and 20151BAB212004the Scientific Research Foundation of the Jiangxi Provincial Education Department under Grant No GJJ160633
文摘Fano-like quantum routing of single photons in a system with two waveguides coupled to two collocated atoms is investigated theoretically. Using a full quantum theory in real space, photonic scattering amplitudes along four ports of the waveguide network are analytically obtained. It is shown that, by adjusting the atomic dipole-dipole interaction, an evident Fano-line shape emerges in the scattering spectra of the single-dot configuration system. Moreover, Fano resonance can also be achieved by varying the atom-waveguide coupling strength and atomic detuning, in the presence of the atomic dipole-dipole interaction. Therefore, the atomic dipole-dipole interaction may be utilized as a possible way to control spectral Fano-like resonance. The feasibility with the experimental waveguide channels is also discussed.