We report a newly constructed laser ablation crossed molecular beam apparatus, equipped with time-sliced velocity map imaging technique, to study state-to-state metal atom reaction dynamics. Supersonic metal atomic be...We report a newly constructed laser ablation crossed molecular beam apparatus, equipped with time-sliced velocity map imaging technique, to study state-to-state metal atom reaction dynamics. Supersonic metal atomic beam is generated by laser vaporization of metal rod, and free expansion design without gas flow channel has been employed to obtain a good quality of metal atomic beam. We have chosen the crossed-beam reaction Al+O2 to test the performance of the new apparatus. Two-rotational-states selected AIO(X^2∑+, v=0, N and N+I4) products can be imaged via P(N) and R(N+14) branches of the Av=l band at the same wavelength, during (1+1) resonance-enhanced multi-photon ionization through the AIO(D2E+) intermediate state. In our experiment at 244.145 nm for simultaneous transitions of P(15) and R(29) branch, two rings in slice image were clearly distinguishable, corresponding to the AiO(v=0, N=IS) and AIO(v=0, N=29) states respectively. The energy difference between the two rotational levels is 403 cm^-1. The success of two states resolved in our apparatus suggests a better collisional energy resolution compared with the recent research study [J. Chem. Phys. 140, 214304 (2014)].展开更多
The reaction dynamics of yttrium atoms with sulfur dioxide molecules at a high collision energy of 36 kcal/mol was studied using time-sliced velocity map ion imaging,crossed molecular beam and laser-ablation method.Th...The reaction dynamics of yttrium atoms with sulfur dioxide molecules at a high collision energy of 36 kcal/mol was studied using time-sliced velocity map ion imaging,crossed molecular beam and laser-ablation method.The product YO was detected via multiphoton ionization at various wavelengths in the region of 482-615 nm.The slice images of YO show a broad velocity distribution and forward-backward peaking angular distribution.The forward scattering signal is stronger than its backward distribution.This indicates that the reaction proceeds via an intermediate complex and the lifetime of the intermediate state is less than one rotational period.The formation of complex suggests that electron transfer occurs in the oxidation reaction.展开更多
One of the themes of modern molecular reac tion dynamics is to charac terize elementary chemical reactions from“quan tum state to quan tum stat e”,and the study of molecular reaction dynamics in excited states can h...One of the themes of modern molecular reac tion dynamics is to charac terize elementary chemical reactions from“quan tum state to quan tum stat e”,and the study of molecular reaction dynamics in excited states can help test the validi ty of modern chemical t heories and provide met hods to cont rol chemical reactions.The subject of this review is to describe the recent experimental techniques used to study the reaction dynamics of metal atoms in the gas phase.Through these techniques,information such as the internal energy distribution and angular distribution of the nascent products or the three-dimensional stereodynamic reactivity can be obtained.In addition,by preparing metal at oms wi th specific exci ted elec tronic states or orbi tal arrangemen ts,information about the reactivity of the electronic states enriches the relevant understanding of the electron transfer mechanism in metal reaction dynamics.展开更多
According to probability theory and atomic activation on bonding interface of metals, a mathematical model was developed for the atomic interfacial reaction during diffusion bonding.The effect of parameters of bonding...According to probability theory and atomic activation on bonding interface of metals, a mathematical model was developed for the atomic interfacial reaction during diffusion bonding.The effect of parameters of bonding processing and material on the bonding strength was then gained.It was suggested that the activation centre of atomic interfacial reaction of bonding may be,in situ,the boundary dislocation and its elastic stress field. A substantial agreement about the quantitative prediction of the model was made with the results of diffusion bonding experiments for 7075Al alloy展开更多
Reaction dynamics in gases at operating temperatures at the atomic level are the basis of heterogeneous gas-solid catalyst reactions and are crucial to the catalyst function.Supported noble metal nanocatalysts such as...Reaction dynamics in gases at operating temperatures at the atomic level are the basis of heterogeneous gas-solid catalyst reactions and are crucial to the catalyst function.Supported noble metal nanocatalysts such as platinum are of interest in fuel cells and as diesel oxidation catalysts for pollution control,and practical ruthenium nanocatalysts are explored for ammonia synthesis.Graphite and graphitic carbons are of interest as supports for the nanocatalysts.Despite considerable literature on the catalytic processes on graphite and graphitic supports,reaction dynamics of the nanocatalysts on the supports in different reactive gas environments and operating temperatures at the single atom level are not well understood.Here we present real time in-situ observations and analyses of reaction dynamics of Pt in oxidation,and practical Ru nanocatalysts in ammonia synthesis,on graphite and related supports under controlled reaction environments using a novel in-situ environmental(scanning) transmission electron microscope with single atom resolution.By recording snapshots of the reaction dynamics,the behaviour of the catalysts is imaged.The images reveal single metal atoms,clusters of a few atoms on the graphitic supports and the support function.These all play key roles in the mobility,sintering and growth of the catalysts.The experimental findings provide new structural insights into atomic scale reaction dynamics,morphology and stability of the nanocatalysts.展开更多
Second-order Born calculations are performed to investigate the triple differential cross sections of coplanar asymmetric laser-assisted (e, 2e) collisions for hydrogen and helium targets. The incident electron is c...Second-order Born calculations are performed to investigate the triple differential cross sections of coplanar asymmetric laser-assisted (e, 2e) collisions for hydrogen and helium targets. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. Detailed calculations of the scattering amplitudes are performed using the Sturmian basis expansion. The state of the ejected electron is described by a Coulomb-Volkov wave function. Two geometries are investigated in which the laser polarization vector is either parallel to the incident momentum of the projectile or parallel to the momentum transfer. Our numerical results show that, in the low energy range, these two laser polarization orientations give the same shape and the same order of magnitude of laser-assisted ionization cross sections of helium and hydrogen targets.展开更多
The kinetics and mechanisms of H abstraction reaction between isoflurane and a CI atom have been investigated using DFT and G3(MP2) methods of theory. The geometrical structures of all species were optimized by the ...The kinetics and mechanisms of H abstraction reaction between isoflurane and a CI atom have been investigated using DFT and G3(MP2) methods of theory. The geometrical structures of all species were optimized by the wB97XD/6-311++G** method. Intrinsic reaction coordinate (IRC) analysis has been carried out for the reaction channels. Thermochemistry data have been obtained by utilizing the high accurate model chemistry method G3(MP2) combined with the standard statistical thermodynamic calculations. Gibbs free energies were used for reaction channels analysis. Two channels were obtained, which correspond to P(1) and P(2). The rate constants for the two channels over a wide temperature range of 200-2000 K were also obtained. The results show that the barriers of P(1) and P(2) reaction channels are 50.36 and 50.34 kJ/mol, respectively, predicting that it exists two competitive channels. The calculated rate constant is in good agreement with the experiment value. Additionally, the results also show that the rate constants also increase from 1.85x10^-16 to 2.16x 10^12 cm3.moleculel.s-1 from 200 to 2000 K展开更多
An improved self-consistent, multi-component, and one-dimensional plasma model for simulating atmospheric pressure argon glow discharge is presented. In the model, both the plasma hydrodynamics model and chemical mode...An improved self-consistent, multi-component, and one-dimensional plasma model for simulating atmospheric pressure argon glow discharge is presented. In the model, both the plasma hydrodynamics model and chemical model are considered. The numerical simulation is carried out for parallel-plate geometry with a separation of 0.06 cm. The results show that Ar* plays a major role in the discharge, which is mainly produced by ground state excitation reaction. The electron temperature reaches its maximum in the cathode sheath but maintains a low value (0.23 eV) in bulk plasma. Elastic collision is the dominant volumetric electron energy loss in atmosphere argon glow discharge, which is negligible in low pressure argon glow discharge. The metastable step-wise ionization is the main mechanism for electron production to sustain the discharge. However, the highest contribution to electron production rate is ground state ionization reaction. The bremsstrahlung power density is related to electric voltage. With the increase of the electric voltage, the bremsstrahlung power density increases, namely, the strength of ultraviolet radiation spectrum enhances in the cathode sheath.展开更多
A comprehensive review on interfacial reactions to form silicides between metal and Si nanowire or wafer is given.Formation of silicide contacts on Si wafers or Si nanowires is a building block needed in making curren...A comprehensive review on interfacial reactions to form silicides between metal and Si nanowire or wafer is given.Formation of silicide contacts on Si wafers or Si nanowires is a building block needed in making current-based Si devices.Thus,the microstructure control of silicide formation on the basis of kinetics of nucleation and growth has relevant applications in microelectronic technology.Repeating events of homogeneous nucleation of epitaxial silicides of Ni and Co on Si in atomic layer reaction is presented.The chemical effort on intrinsic diffusivities in diffusion-controlled layer-typed intermetallic compound growth of Ni2Si is analyzed.展开更多
Pseudo-first order reaction rate constants of 5,10,15-tris(pentafluorophenyl)corrole Mn(V)-oxo (F_(15)CMn(V)-oxo),5,15-bis(pentafluorophenyl)-10-(phenyl)corrole Mn(V)-oxo(F_(10)CMn(V)-oxo),5,15- ...Pseudo-first order reaction rate constants of 5,10,15-tris(pentafluorophenyl)corrole Mn(V)-oxo (F_(15)CMn(V)-oxo),5,15-bis(pentafluorophenyl)-10-(phenyl)corrole Mn(V)-oxo(F_(10)CMn(V)-oxo),5,15- bis(phenyl)-10-(pentafluorophenyl)corrole Mn(V)-oxo(F_5CMn(V)-oxo) and 5,10,15-tris(phenyl)corrole Mn(V)-oxo(F_0CMn(V)-oxo) with a series of alkene substrates in different solvents were determined by UV-vis spectroscopy.The results indicated that the oxygen atom transfer pathway between Mn(V)-oxo corrole and alkene is solvent-dependent.展开更多
Fluorine-containing halogenated fluorophenol may have effect as intermediate species involved in the formation of polyfluorinated dibenzo-p-dioxin/dibenzofurans (PFDDs/Fs). The mechanism for the atomic H initiated r...Fluorine-containing halogenated fluorophenol may have effect as intermediate species involved in the formation of polyfluorinated dibenzo-p-dioxin/dibenzofurans (PFDDs/Fs). The mechanism for the atomic H initiated reactions with complete series of nineteen fluorophenol congeners was studies using the density functional theory. At the MPWB1K,/6-31+G(d,p) level, the geometries and frequencies of reactants, transition states, and products were obtained, and the accurate energetic values were acquired at the MPWB 1K/6-311 +G(3df,2p) level. The rate constants were evaluated by the canonical variational transition-state theory with the small curvature tunneling contribution over a wide temperature range of 600-1000 K. The study shows that the intramolecular hydrogen-bond in the ortho-substituted FPs as well as the inductive effect of the electron-withdrawing fluorine and steric repulsion of multiple substitutions may ultimately be responsible for the relative strength of the O-H bonds in FPs. The results can be used for further studies on PFDD/Fs formation mechanism.展开更多
Dielectric barrier discharges (DBD) have been used in the degradation of dioxins due to the large number of excimers and free radicals produced in discharge process. In this article, the density functional theory (...Dielectric barrier discharges (DBD) have been used in the degradation of dioxins due to the large number of excimers and free radicals produced in discharge process. In this article, the density functional theory (DFT) is used to study the degradation mechanism of octachlorinated dibenzo-p-dioxin (OCDD) with the atomic oxygen O(3P) in DBD reactor. The reactants, intermediates, transition states and products are optimized at the MPWB1K/6- 31 + G(d,p) level. The vibrational frequencies have been calculated at the same level. The reaction pathways and mechanisms are analyzed in detail. The effect of removing the chlorine atom on environment also has been discussed.展开更多
1-D quantum calculations of reaction probabilities have been carried out for the col- linear reaction Cl+HCl (v≤3)→ClH (v'≤3)+Cl using hyperspherical coordinates. An LEPS po- tential energy surface with a shallow ...1-D quantum calculations of reaction probabilities have been carried out for the col- linear reaction Cl+HCl (v≤3)→ClH (v'≤3)+Cl using hyperspherical coordinates. An LEPS po- tential energy surface with a shallow well depth of -3.22 KJ/mol has been used in the calculations. The state-to-state reaction probabilities have been calculated. According to the results obtained we found that the diagonal (v=v') reaction probabilities dominate over the off-diagonal (vv') reaction probabilities and the largest off-diagonal reaction probabilities are smaller than 0.1. The reaction probabilities show oscillation as a function of energy. Dynamic resonances strengthen for the potential energy surface with a well.展开更多
基金We are indebted to Prof. Kopin Liu (IAMS, Taipei) for stimulating discussions on going experiments, to Prof. Ming-fei Zhou and Assoc. Prof. Guan-jun Wang (Fudan University, Shanghai) for assistance in building machine, to Prof. Uzi. Even (Tel Aviv University, Tel Aviv) for discussions oil E1 valve employnmnt in laser ablation, and to Prof. Xue-ming Yang's group (DICP, Dalian) for new Iaser system. This work was supported by the National Natural Science Foundation of China (No.21322309) and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.
文摘We report a newly constructed laser ablation crossed molecular beam apparatus, equipped with time-sliced velocity map imaging technique, to study state-to-state metal atom reaction dynamics. Supersonic metal atomic beam is generated by laser vaporization of metal rod, and free expansion design without gas flow channel has been employed to obtain a good quality of metal atomic beam. We have chosen the crossed-beam reaction Al+O2 to test the performance of the new apparatus. Two-rotational-states selected AIO(X^2∑+, v=0, N and N+I4) products can be imaged via P(N) and R(N+14) branches of the Av=l band at the same wavelength, during (1+1) resonance-enhanced multi-photon ionization through the AIO(D2E+) intermediate state. In our experiment at 244.145 nm for simultaneous transitions of P(15) and R(29) branch, two rings in slice image were clearly distinguishable, corresponding to the AiO(v=0, N=IS) and AIO(v=0, N=29) states respectively. The energy difference between the two rotational levels is 403 cm^-1. The success of two states resolved in our apparatus suggests a better collisional energy resolution compared with the recent research study [J. Chem. Phys. 140, 214304 (2014)].
基金supported by the National Natural Science Foundation of China (No.21673047,No.21327901and No.21573047)the Shanghai Key Laboratory Foundation of Molecular Catalysis and Innovative Materialsthe Program for Professor of Special Appointment(Eastern Scholar) at Shanghai Institutions of Higher Learning.
文摘The reaction dynamics of yttrium atoms with sulfur dioxide molecules at a high collision energy of 36 kcal/mol was studied using time-sliced velocity map ion imaging,crossed molecular beam and laser-ablation method.The product YO was detected via multiphoton ionization at various wavelengths in the region of 482-615 nm.The slice images of YO show a broad velocity distribution and forward-backward peaking angular distribution.The forward scattering signal is stronger than its backward distribution.This indicates that the reaction proceeds via an intermediate complex and the lifetime of the intermediate state is less than one rotational period.The formation of complex suggests that electron transfer occurs in the oxidation reaction.
基金The work was supported by the National Natural Science Foundation of China(No.21673047 and No.22073019)the Shanghai Key Laboratory Foundation of Molecular Catalysis and Innovative Materialsthe Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning.
文摘One of the themes of modern molecular reac tion dynamics is to charac terize elementary chemical reactions from“quan tum state to quan tum stat e”,and the study of molecular reaction dynamics in excited states can help test the validi ty of modern chemical t heories and provide met hods to cont rol chemical reactions.The subject of this review is to describe the recent experimental techniques used to study the reaction dynamics of metal atoms in the gas phase.Through these techniques,information such as the internal energy distribution and angular distribution of the nascent products or the three-dimensional stereodynamic reactivity can be obtained.In addition,by preparing metal at oms wi th specific exci ted elec tronic states or orbi tal arrangemen ts,information about the reactivity of the electronic states enriches the relevant understanding of the electron transfer mechanism in metal reaction dynamics.
文摘According to probability theory and atomic activation on bonding interface of metals, a mathematical model was developed for the atomic interfacial reaction during diffusion bonding.The effect of parameters of bonding processing and material on the bonding strength was then gained.It was suggested that the activation centre of atomic interfacial reaction of bonding may be,in situ,the boundary dislocation and its elastic stress field. A substantial agreement about the quantitative prediction of the model was made with the results of diffusion bonding experiments for 7075Al alloy
基金the Engineering and Physical Science Research Council(EPSRC),U.K.for the award of a research grant EP/J0118058/1 and postdoctoral research assistantships(PDRAs) to M.R.W.and R.W.M.from the grant。
文摘Reaction dynamics in gases at operating temperatures at the atomic level are the basis of heterogeneous gas-solid catalyst reactions and are crucial to the catalyst function.Supported noble metal nanocatalysts such as platinum are of interest in fuel cells and as diesel oxidation catalysts for pollution control,and practical ruthenium nanocatalysts are explored for ammonia synthesis.Graphite and graphitic carbons are of interest as supports for the nanocatalysts.Despite considerable literature on the catalytic processes on graphite and graphitic supports,reaction dynamics of the nanocatalysts on the supports in different reactive gas environments and operating temperatures at the single atom level are not well understood.Here we present real time in-situ observations and analyses of reaction dynamics of Pt in oxidation,and practical Ru nanocatalysts in ammonia synthesis,on graphite and related supports under controlled reaction environments using a novel in-situ environmental(scanning) transmission electron microscope with single atom resolution.By recording snapshots of the reaction dynamics,the behaviour of the catalysts is imaged.The images reveal single metal atoms,clusters of a few atoms on the graphitic supports and the support function.These all play key roles in the mobility,sintering and growth of the catalysts.The experimental findings provide new structural insights into atomic scale reaction dynamics,morphology and stability of the nanocatalysts.
文摘Second-order Born calculations are performed to investigate the triple differential cross sections of coplanar asymmetric laser-assisted (e, 2e) collisions for hydrogen and helium targets. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. Detailed calculations of the scattering amplitudes are performed using the Sturmian basis expansion. The state of the ejected electron is described by a Coulomb-Volkov wave function. Two geometries are investigated in which the laser polarization vector is either parallel to the incident momentum of the projectile or parallel to the momentum transfer. Our numerical results show that, in the low energy range, these two laser polarization orientations give the same shape and the same order of magnitude of laser-assisted ionization cross sections of helium and hydrogen targets.
基金financed by the Natural Science Foundation of Shaanxi Province(2014JM2046,2013JQ2027)the Special Natural Science Foundation of Science and Technology Bureau of Xi’an City Government(CXY1443WL03,CXY1352WL19 and CXY1352WL20)+1 种基金National Science Foundation of China(21303135)the Industrial research project of Science and Technology Department of Shaanxi Province(2013K09-25)
文摘The kinetics and mechanisms of H abstraction reaction between isoflurane and a CI atom have been investigated using DFT and G3(MP2) methods of theory. The geometrical structures of all species were optimized by the wB97XD/6-311++G** method. Intrinsic reaction coordinate (IRC) analysis has been carried out for the reaction channels. Thermochemistry data have been obtained by utilizing the high accurate model chemistry method G3(MP2) combined with the standard statistical thermodynamic calculations. Gibbs free energies were used for reaction channels analysis. Two channels were obtained, which correspond to P(1) and P(2). The rate constants for the two channels over a wide temperature range of 200-2000 K were also obtained. The results show that the barriers of P(1) and P(2) reaction channels are 50.36 and 50.34 kJ/mol, respectively, predicting that it exists two competitive channels. The calculated rate constant is in good agreement with the experiment value. Additionally, the results also show that the rate constants also increase from 1.85x10^-16 to 2.16x 10^12 cm3.moleculel.s-1 from 200 to 2000 K
基金supported by the Major State Basic Research Development Program of China (973 Program) (No. 2011CB20941)Scientific Research Foundation of State Key Lab. of Power Transmission Equipment and System Security of China (No. 2007DA10512709102)+1 种基金National Natural Science Foundation of China (No. 51007096)the Fundamental Research Funds for the Central Universities of China(No. CDJZR10150001)
文摘An improved self-consistent, multi-component, and one-dimensional plasma model for simulating atmospheric pressure argon glow discharge is presented. In the model, both the plasma hydrodynamics model and chemical model are considered. The numerical simulation is carried out for parallel-plate geometry with a separation of 0.06 cm. The results show that Ar* plays a major role in the discharge, which is mainly produced by ground state excitation reaction. The electron temperature reaches its maximum in the cathode sheath but maintains a low value (0.23 eV) in bulk plasma. Elastic collision is the dominant volumetric electron energy loss in atmosphere argon glow discharge, which is negligible in low pressure argon glow discharge. The metastable step-wise ionization is the main mechanism for electron production to sustain the discharge. However, the highest contribution to electron production rate is ground state ionization reaction. The bremsstrahlung power density is related to electric voltage. With the increase of the electric voltage, the bremsstrahlung power density increases, namely, the strength of ultraviolet radiation spectrum enhances in the cathode sheath.
文摘A comprehensive review on interfacial reactions to form silicides between metal and Si nanowire or wafer is given.Formation of silicide contacts on Si wafers or Si nanowires is a building block needed in making current-based Si devices.Thus,the microstructure control of silicide formation on the basis of kinetics of nucleation and growth has relevant applications in microelectronic technology.Repeating events of homogeneous nucleation of epitaxial silicides of Ni and Co on Si in atomic layer reaction is presented.The chemical effort on intrinsic diffusivities in diffusion-controlled layer-typed intermetallic compound growth of Ni2Si is analyzed.
基金The financial support from the National Natural Science Foundation of China(Nos.20971046 and 21171057)
文摘Pseudo-first order reaction rate constants of 5,10,15-tris(pentafluorophenyl)corrole Mn(V)-oxo (F_(15)CMn(V)-oxo),5,15-bis(pentafluorophenyl)-10-(phenyl)corrole Mn(V)-oxo(F_(10)CMn(V)-oxo),5,15- bis(phenyl)-10-(pentafluorophenyl)corrole Mn(V)-oxo(F_5CMn(V)-oxo) and 5,10,15-tris(phenyl)corrole Mn(V)-oxo(F_0CMn(V)-oxo) with a series of alkene substrates in different solvents were determined by UV-vis spectroscopy.The results indicated that the oxygen atom transfer pathway between Mn(V)-oxo corrole and alkene is solvent-dependent.
基金supported by the National Natural Science Foundation of China(No.21177077,21177076)the Independent Innovation Foundation of Shandong University(No.2012JC030)
文摘Fluorine-containing halogenated fluorophenol may have effect as intermediate species involved in the formation of polyfluorinated dibenzo-p-dioxin/dibenzofurans (PFDDs/Fs). The mechanism for the atomic H initiated reactions with complete series of nineteen fluorophenol congeners was studies using the density functional theory. At the MPWB1K,/6-31+G(d,p) level, the geometries and frequencies of reactants, transition states, and products were obtained, and the accurate energetic values were acquired at the MPWB 1K/6-311 +G(3df,2p) level. The rate constants were evaluated by the canonical variational transition-state theory with the small curvature tunneling contribution over a wide temperature range of 600-1000 K. The study shows that the intramolecular hydrogen-bond in the ortho-substituted FPs as well as the inductive effect of the electron-withdrawing fluorine and steric repulsion of multiple substitutions may ultimately be responsible for the relative strength of the O-H bonds in FPs. The results can be used for further studies on PFDD/Fs formation mechanism.
基金supported by the National Natural Science Foundation of China (No. 21277082, 21177076, 71201093)the Promotive Research Fund for Excellent Young and Middleaged Scientists of Shandong Province (Nos. BS2012HZ009, BS2012SF012)+2 种基金Graduate Independent Innovation Foundation of Shandong University (No. yzc12120)Program for New Century Excellent Talents in University (NCET-13-0349)Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Program (No. 295132)
文摘Dielectric barrier discharges (DBD) have been used in the degradation of dioxins due to the large number of excimers and free radicals produced in discharge process. In this article, the density functional theory (DFT) is used to study the degradation mechanism of octachlorinated dibenzo-p-dioxin (OCDD) with the atomic oxygen O(3P) in DBD reactor. The reactants, intermediates, transition states and products are optimized at the MPWB1K/6- 31 + G(d,p) level. The vibrational frequencies have been calculated at the same level. The reaction pathways and mechanisms are analyzed in detail. The effect of removing the chlorine atom on environment also has been discussed.
文摘1-D quantum calculations of reaction probabilities have been carried out for the col- linear reaction Cl+HCl (v≤3)→ClH (v'≤3)+Cl using hyperspherical coordinates. An LEPS po- tential energy surface with a shallow well depth of -3.22 KJ/mol has been used in the calculations. The state-to-state reaction probabilities have been calculated. According to the results obtained we found that the diagonal (v=v') reaction probabilities dominate over the off-diagonal (vv') reaction probabilities and the largest off-diagonal reaction probabilities are smaller than 0.1. The reaction probabilities show oscillation as a function of energy. Dynamic resonances strengthen for the potential energy surface with a well.