期刊文献+
共找到29,980篇文章
< 1 2 250 >
每页显示 20 50 100
中医药国际在线课程教学同声传译的策略——基于一项美国中医药PDA/CEU学分项目
1
作者 顾震宇 周阿剑 《中国中医药现代远程教育》 2024年第11期14-17,共4页
同声传译在中医药国际在线课程教学中具有教学过程顺畅、思路清晰、教学速度可控等优势,但译员需要较强的医学知识理解和表达能力。长期准备需要构建中西医知识框架,通过留学生临床实习带教口译训练、短期记忆训练、中西医材料笔译、中... 同声传译在中医药国际在线课程教学中具有教学过程顺畅、思路清晰、教学速度可控等优势,但译员需要较强的医学知识理解和表达能力。长期准备需要构建中西医知识框架,通过留学生临床实习带教口译训练、短期记忆训练、中西医材料笔译、中医药线下课程的交替传译等方法提高能力;短期准备主要从特定专题、主讲者和受众特点三方面解决具体问题;精力有效分配方法包括驾驭逻辑链、医学信息的视觉化、厘清中西医思维变换、顺句驱动等。 展开更多
关键词 中医药 国际课程 在线教学 同声传译 pda/CEU
下载PDF
个人数字助理(PDA)在提升门急诊输液室安全护理流程中的实施价值研究
2
作者 浦丽芳 汤君 《中文科技期刊数据库(文摘版)医药卫生》 2024年第11期0159-0162,共4页
分析在门急诊输液室安全护理中,引入个人数字助理(PDA)的实施效果。方法 限定时间:2023.01-2023.12;限定对象:门急诊输液室输液患者200例;研究方法:PDA专项护理、常规护理。比较干预效果。结果 采用PDA专项护理护理质量较常规护理佳;分... 分析在门急诊输液室安全护理中,引入个人数字助理(PDA)的实施效果。方法 限定时间:2023.01-2023.12;限定对象:门急诊输液室输液患者200例;研究方法:PDA专项护理、常规护理。比较干预效果。结果 采用PDA专项护理护理质量较常规护理佳;分析组护理效果较参比组佳(P<0.05)。结论 在急诊输液室安全护理中,应用PDA专项护理,利于安全护理及护理质量提升。 展开更多
关键词 门急诊 输液室 安全护理 个人数字助理(pda) 效果 价值
下载PDF
粗糙度对铜基表面PDA/PTFE涂层摩擦磨损性能的影响
3
作者 付壁聪 傅丽华 +4 位作者 杜三明 魏超凡 张永振 花铝东 张鑫 《材料热处理学报》 CAS CSCD 北大核心 2024年第11期188-197,共10页
为了改善PTFE涂层和Cu基体的界面结合性能,采用聚多巴胺(PDA)对PTFE涂层和Cu基体之间的界面进行改性,在不同粗糙度的Cu基体表面制备了PDA/PTFE自润滑涂层,利用光学轮廓仪、扫描电镜(SEM)、接触角测量仪和摩擦磨损试验机等研究了基体粗... 为了改善PTFE涂层和Cu基体的界面结合性能,采用聚多巴胺(PDA)对PTFE涂层和Cu基体之间的界面进行改性,在不同粗糙度的Cu基体表面制备了PDA/PTFE自润滑涂层,利用光学轮廓仪、扫描电镜(SEM)、接触角测量仪和摩擦磨损试验机等研究了基体粗糙度对PDA改性PTFE涂层微观组织和摩擦磨损性能的影响。结果表明:PTFE涂层的成膜受到基体粗糙度和PDA分布的综合作用;当基体粗糙度R_(a)=60 nm时,基体表面粗糙峰和粗糙谷都覆盖了PTFE涂层,涂层的厚度达到最大值(约为1.83μm),此时PDA改性PTFE涂层的耐久性达到最大值(循环次数=813),涂层的磨损率最低;当基体粗糙度过大时,粗糙峰处PDA含量减少且粗糙峰处应力集中严重,容易导致PDA改性PTFE涂层的快速失效。 展开更多
关键词 pda/PTFE涂层 粗糙度 微观组织 摩擦磨损
原文传递
NTA-Fe@PDA/H_(2)O_(2)氧化去除废水中盐酸土霉素 被引量:1
4
作者 林嘉伟 苏冰琴 +5 位作者 李兴发 卫月星 郑晓晓 张霞玲 宋鑫峂 赵文博 《中国环境科学》 EI CAS CSCD 北大核心 2024年第5期2680-2692,共13页
利用聚多巴胺(PDA)与氮川三乙酸(NTA)接枝并螯合Fe^(3+),形成以PDA为载体、NTA为Fe^(3+)螯合剂的芬顿催化剂NTA-Fe@PDA,采用NTA-Fe@PDA/H_(2)O_(2)芬顿氧化法去除废水中盐酸土霉素(OTC).材料表征结果发现,NTA-Fe@PDA属于典型的介孔结构... 利用聚多巴胺(PDA)与氮川三乙酸(NTA)接枝并螯合Fe^(3+),形成以PDA为载体、NTA为Fe^(3+)螯合剂的芬顿催化剂NTA-Fe@PDA,采用NTA-Fe@PDA/H_(2)O_(2)芬顿氧化法去除废水中盐酸土霉素(OTC).材料表征结果发现,NTA-Fe@PDA属于典型的介孔结构,Fe元素与有机配体成功螯合,PDA的聚合效果良好.探讨了H_(2)O_(2)投加量、NTA-Fe@PDA投加量和初始pH值对OTC降解的影响.结果表明,在NTA-Fe@PDA浓度为200mg/L,H_(2)O_(2)浓度为5mmol/L,初始pH值为4.85的条件下,反应60min后,20mg/L OTC的降解率达到96.23%.自由基鉴定实验表明,·OH是OTC降解过程中的主要自由基.通过LC-MS分析结果推测了OTC降解的中间产物和可能的降解路径.NTA-Fe@PDA在反应体系中重复利用8次以后,OTC的降解率仍在86.80%以上.NTA-Fe@PDA/H_(2)O_(2)芬顿法为抗生素废水处理提供了一种新思路和技术参考. 展开更多
关键词 聚多巴胺 Fe^(3+)螯合剂 芬顿氧化 盐酸土霉素 降解机制
下载PDF
PDA与GIS技术联合在森林资源规划设计调查中的具体应用 被引量:2
5
作者 张辉 《林业科技情报》 2024年第1期36-40,共5页
以往的森林资源二类调查主要以地面调查为主,工作量重、流程繁琐,同时存在表、图、卡片分离的情况,调查期间会牵涉大量属性数据与空间数据,其中空间数据需要在纸质地形图采集,属性数据调查结果则以代码的形式进行保存,所以业内数据录入... 以往的森林资源二类调查主要以地面调查为主,工作量重、流程繁琐,同时存在表、图、卡片分离的情况,调查期间会牵涉大量属性数据与空间数据,其中空间数据需要在纸质地形图采集,属性数据调查结果则以代码的形式进行保存,所以业内数据录入任务重,且在工作开展中出错率高,数据更新困难,与当前林业资源管理工作的开展不相符。在卫星技术、航空航天技术、遥感数字图像计算机解译技术持续发展背景下,以GIS、RS、GPS为主的3S集成技术因独特的高效快速、低耗科学等优势在森林资源规划设计调查领域中得到了大力应用,实现了传统工作模式不足的弥补,更能满足森林资源再生性、动态性与辽阔性等特征。在现代信息技术持续发展背景下,各类功能强大设备的出现更是为先进技术的应用提供了便利,将PDA与GIS技术联合开展森林资源规划设计调查成为了现下关注的焦点,可实现工作效率与质量的提升,促森林资源管理更加规范。故而本文结合工作实际致力于这方面展开探索,以供参考。 展开更多
关键词 pda GIS 森林资源规划设计 调查 应用
下载PDF
B-PDA-G/PDMS导热绝缘材料的制备及应用
6
作者 程春芬 潘佳俊 +2 位作者 唐孔科 夏兆鹏 刘志涛 《现代纺织技术》 北大核心 2024年第4期10-20,共11页
为解决可穿戴电子设备中的散热问题,开发了一种高导热、高电绝缘性能的柔性热管理材料。通过选用氮化硼(BN)和石墨烯纳米片(GNPs)作为杂化导热填料,选取聚多巴胺(PDA)对杂化导热填料表面进行改性,然后与聚二甲基硅氧烷(PDMS)混合,采用... 为解决可穿戴电子设备中的散热问题,开发了一种高导热、高电绝缘性能的柔性热管理材料。通过选用氮化硼(BN)和石墨烯纳米片(GNPs)作为杂化导热填料,选取聚多巴胺(PDA)对杂化导热填料表面进行改性,然后与聚二甲基硅氧烷(PDMS)混合,采用热压法制备了不同填料质量分数的B-PDA-G/PDMS导热绝缘膜。利用傅里叶变换红外光谱、X射线光电子能谱和扫描电镜等表征手段,探究填料B-PDA-G与单一BN对PDMS膜导热性能的影响,并评估其在纺织领域的应用可行性。结果表明:B-PDA-G/PDMS膜在低填料质量分数时能够保持良好的力学性能、电绝缘性和导热性能。当BN与GNPs的质量比为5∶5,填料质量分数为30%时B-PDA-G/PDMS导热绝缘膜的面内导热率最高可达7.63 W/(m·K),相较于BN/PDMS和纯PDMS膜分别提高了2.8倍和27.3倍。B-PDA-G/PDMS作为封装材料应用于电热织物中表现出良好的导热和散热性能,表明其在柔性可穿戴设备和电子器件的热管理中应用潜力巨大。 展开更多
关键词 表面改性 聚二甲基硅氧烷(PDMS) 聚多巴胺(pda) 导热绝缘 热管理
下载PDF
XMAM:X-raying models with a matrix to reveal backdoor attacks for federated learning 被引量:1
7
作者 Jianyi Zhang Fangjiao Zhang +3 位作者 Qichao Jin Zhiqiang Wang Xiaodong Lin Xiali Hei 《Digital Communications and Networks》 SCIE CSCD 2024年第4期1154-1167,共14页
Federated Learning(FL),a burgeoning technology,has received increasing attention due to its privacy protection capability.However,the base algorithm FedAvg is vulnerable when it suffers from so-called backdoor attacks... Federated Learning(FL),a burgeoning technology,has received increasing attention due to its privacy protection capability.However,the base algorithm FedAvg is vulnerable when it suffers from so-called backdoor attacks.Former researchers proposed several robust aggregation methods.Unfortunately,due to the hidden characteristic of backdoor attacks,many of these aggregation methods are unable to defend against backdoor attacks.What's more,the attackers recently have proposed some hiding methods that further improve backdoor attacks'stealthiness,making all the existing robust aggregation methods fail.To tackle the threat of backdoor attacks,we propose a new aggregation method,X-raying Models with A Matrix(XMAM),to reveal the malicious local model updates submitted by the backdoor attackers.Since we observe that the output of the Softmax layer exhibits distinguishable patterns between malicious and benign updates,unlike the existing aggregation algorithms,we focus on the Softmax layer's output in which the backdoor attackers are difficult to hide their malicious behavior.Specifically,like medical X-ray examinations,we investigate the collected local model updates by using a matrix as an input to get their Softmax layer's outputs.Then,we preclude updates whose outputs are abnormal by clustering.Without any training dataset in the server,the extensive evaluations show that our XMAM can effectively distinguish malicious local model updates from benign ones.For instance,when other methods fail to defend against the backdoor attacks at no more than 20%malicious clients,our method can tolerate 45%malicious clients in the black-box mode and about 30%in Projected Gradient Descent(PGD)mode.Besides,under adaptive attacks,the results demonstrate that XMAM can still complete the global model training task even when there are 40%malicious clients.Finally,we analyze our method's screening complexity and compare the real screening time with other methods.The results show that XMAM is about 10–10000 times faster than the existing methods. 展开更多
关键词 Federated learning Backdoor attacks Aggregation methods
下载PDF
Distributed Platooning Control of Automated Vehicles Subject to Replay Attacks Based on Proportional Integral Observers 被引量:1
8
作者 Meiling Xie Derui Ding +3 位作者 Xiaohua Ge Qing-Long Han Hongli Dong Yan Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1954-1966,共13页
Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issu... Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy. 展开更多
关键词 Automated vehicles platooning control proportional-integral-observers(PIOs) replay attacks TIME-DELAYS
下载PDF
Anti-Byzantine Attacks Enabled Vehicle Selection for Asynchronous Federated Learning in Vehicular Edge Computing 被引量:1
9
作者 Zhang Cui Xu Xiao +4 位作者 Wu Qiong Fan Pingyi Fan Qiang Zhu Huiling Wang Jiangzhou 《China Communications》 SCIE CSCD 2024年第8期1-17,共17页
In vehicle edge computing(VEC),asynchronous federated learning(AFL)is used,where the edge receives a local model and updates the global model,effectively reducing the global aggregation latency.Due to different amount... In vehicle edge computing(VEC),asynchronous federated learning(AFL)is used,where the edge receives a local model and updates the global model,effectively reducing the global aggregation latency.Due to different amounts of local data,computing capabilities and locations of the vehicles,renewing the global model with same weight is inappropriate.The above factors will affect the local calculation time and upload time of the local model,and the vehicle may also be affected by Byzantine attacks,leading to the deterioration of the vehicle data.However,based on deep reinforcement learning(DRL),we can consider these factors comprehensively to eliminate vehicles with poor performance as much as possible and exclude vehicles that have suffered Byzantine attacks before AFL.At the same time,when aggregating AFL,we can focus on those vehicles with better performance to improve the accuracy and safety of the system.In this paper,we proposed a vehicle selection scheme based on DRL in VEC.In this scheme,vehicle’s mobility,channel conditions with temporal variations,computational resources with temporal variations,different data amount,transmission channel status of vehicles as well as Byzantine attacks were taken into account.Simulation results show that the proposed scheme effectively improves the safety and accuracy of the global model. 展开更多
关键词 asynchronous federated learning byzantine attacks vehicle selection vehicular edge computing
下载PDF
Evaluating Privacy Leakage and Memorization Attacks on Large Language Models (LLMs) in Generative AI Applications 被引量:1
10
作者 Harshvardhan Aditya Siddansh Chawla +6 位作者 Gunika Dhingra Parijat Rai Saumil Sood Tanmay Singh Zeba Mohsin Wase Arshdeep Bahga Vijay K. Madisetti 《Journal of Software Engineering and Applications》 2024年第5期421-447,共27页
The recent interest in the deployment of Generative AI applications that use large language models (LLMs) has brought to the forefront significant privacy concerns, notably the leakage of Personally Identifiable Infor... The recent interest in the deployment of Generative AI applications that use large language models (LLMs) has brought to the forefront significant privacy concerns, notably the leakage of Personally Identifiable Information (PII) and other confidential or protected information that may have been memorized during training, specifically during a fine-tuning or customization process. We describe different black-box attacks from potential adversaries and study their impact on the amount and type of information that may be recovered from commonly used and deployed LLMs. Our research investigates the relationship between PII leakage, memorization, and factors such as model size, architecture, and the nature of attacks employed. The study utilizes two broad categories of attacks: PII leakage-focused attacks (auto-completion and extraction attacks) and memorization-focused attacks (various membership inference attacks). The findings from these investigations are quantified using an array of evaluative metrics, providing a detailed understanding of LLM vulnerabilities and the effectiveness of different attacks. 展开更多
关键词 Large Language Models PII Leakage Privacy Memorization OVERFITTING Membership Inference attack (MIA)
下载PDF
Ensuring Secure Platooning of Constrained Intelligent and Connected Vehicles Against Byzantine Attacks:A Distributed MPC Framework 被引量:1
11
作者 Henglai Wei Hui Zhang +1 位作者 Kamal AI-Haddad Yang Shi 《Engineering》 SCIE EI CAS CSCD 2024年第2期35-46,共12页
This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control fram... This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings. 展开更多
关键词 Model predictive control Resilient control Platoon control Intelligent and connected vehicle Byzantine attacks
下载PDF
用于C_(3)H_(6)/N_(2)分离的PDA@PEBA2533膜的制备
12
作者 杜翠花 张茜 +2 位作者 王晓东 黄伟 周明 《化工进展》 EI CAS CSCD 北大核心 2024年第1期437-446,共10页
为回收聚丙烯制备尾气中的丙烯,采用本实验室独创的浸渍-旋转法在聚醚嵌段共聚酰胺(PEBA2533)膜表面沉积聚多巴胺(PDA)膜层制备出对C3H6具有更强亲和性的PDA@PEBA2533膜。利用扫描电子显微镜(SEM)和X射线衍射(XRD)对PDA颗粒和膜进行表... 为回收聚丙烯制备尾气中的丙烯,采用本实验室独创的浸渍-旋转法在聚醚嵌段共聚酰胺(PEBA2533)膜表面沉积聚多巴胺(PDA)膜层制备出对C3H6具有更强亲和性的PDA@PEBA2533膜。利用扫描电子显微镜(SEM)和X射线衍射(XRD)对PDA颗粒和膜进行表征。考察了PDA沉积时间对膜形貌、结构以及分离性能的影响,也考察了温度和压力等操作条件对膜分离性能的影响。探索了PDA@PEBA2533膜对不同C3H6浓度的C_(3)H_(6)/N_(2)混合气的分离效果以及膜的长时间分离稳定性。结果表明,沉积PDA于PEBA2533膜表面有效提高了膜的分离性能。当沉积时间不小于24h时,可得到连续的PDA膜层,随沉积时间的增加,膜层逐渐增厚,气体渗透速率先增大后减小,选择性持续上升,沉积24h所制备的膜分离性能最佳。增大操作温度和压力,膜对C3H6和N2的渗透速率均增大,C_(3)H_(6)/N_(2)选择性则降低。增大混合气中C3H6浓度,膜对C3H6的渗透速率和选择性均呈现先上升后下降的趋势。在所制备的分离性能最好的PDA@PEBA2533膜上,0.2MPa时,对C3H6体积分数为20%的混合气,温度从0℃提高到50℃,C3H6渗透速率从8.25GPU增加到71.42GPU,C_(3)H_(6)/N_(2)选择性从22.92降低至10.14。在130h的气体分离实验中,该膜表现出良好的稳定性。该膜与其他分离C_(3)H_(6)/N_(2)混合气膜相比具有一定的优势。 展开更多
关键词 C_(3)H_(6)/N_(2)混合气 分离 浸渍-旋转法 聚多巴胺@聚醚嵌段共聚酰胺
下载PDF
A Probabilistic Trust Model and Control Algorithm to Protect 6G Networks against Malicious Data Injection Attacks in Edge Computing Environments 被引量:1
13
作者 Borja Bordel Sánchez Ramón Alcarria Tomás Robles 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期631-654,共24页
Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control l... Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control loops critical for managing Industry 5.0 deployments,digital agriculture systems,and essential infrastructures.The provision of extensive machine-type communications through 6G will render many of these innovative systems autonomous and unsupervised.While full automation will enhance industrial efficiency significantly,it concurrently introduces new cyber risks and vulnerabilities.In particular,unattended systems are highly susceptible to trust issues:malicious nodes and false information can be easily introduced into control loops.Additionally,Denialof-Service attacks can be executed by inundating the network with valueless noise.Current anomaly detection schemes require the entire transformation of the control software to integrate new steps and can only mitigate anomalies that conform to predefined mathematical models.Solutions based on an exhaustive data collection to detect anomalies are precise but extremely slow.Standard models,with their limited understanding of mobile networks,can achieve precision rates no higher than 75%.Therefore,more general and transversal protection mechanisms are needed to detect malicious behaviors transparently.This paper introduces a probabilistic trust model and control algorithm designed to address this gap.The model determines the probability of any node to be trustworthy.Communication channels are pruned for those nodes whose probability is below a given threshold.The trust control algorithmcomprises three primary phases,which feed themodel with three different probabilities,which are weighted and combined.Initially,anomalous nodes are identified using Gaussian mixture models and clustering technologies.Next,traffic patterns are studied using digital Bessel functions and the functional scalar product.Finally,the information coherence and content are analyzed.The noise content and abnormal information sequences are detected using a Volterra filter and a bank of Finite Impulse Response filters.An experimental validation based on simulation tools and environments was carried out.Results show the proposed solution can successfully detect up to 92%of malicious data injection attacks. 展开更多
关键词 6G networks noise injection attacks Gaussian mixture model Bessel function traffic filter Volterra filter
下载PDF
Detection and defending the XSS attack using novel hybrid stacking ensemble learning-based DNN approach 被引量:1
14
作者 Muralitharan Krishnan Yongdo Lim +1 位作者 Seethalakshmi Perumal Gayathri Palanisamy 《Digital Communications and Networks》 SCIE CSCD 2024年第3期716-727,共12页
Existing web-based security applications have failed in many situations due to the great intelligence of attackers.Among web applications,Cross-Site Scripting(XSS)is one of the dangerous assaults experienced while mod... Existing web-based security applications have failed in many situations due to the great intelligence of attackers.Among web applications,Cross-Site Scripting(XSS)is one of the dangerous assaults experienced while modifying an organization's or user's information.To avoid these security challenges,this article proposes a novel,all-encompassing combination of machine learning(NB,SVM,k-NN)and deep learning(RNN,CNN,LSTM)frameworks for detecting and defending against XSS attacks with high accuracy and efficiency.Based on the representation,a novel idea for merging stacking ensemble with web applications,termed“hybrid stacking”,is proposed.In order to implement the aforementioned methods,four distinct datasets,each of which contains both safe and unsafe content,are considered.The hybrid detection method can adaptively identify the attacks from the URL,and the defense mechanism inherits the advantages of URL encoding with dictionary-based mapping to improve prediction accuracy,accelerate the training process,and effectively remove the unsafe JScript/JavaScript keywords from the URL.The simulation results show that the proposed hybrid model is more efficient than the existing detection methods.It produces more than 99.5%accurate XSS attack classification results(accuracy,precision,recall,f1_score,and Receiver Operating Characteristic(ROC))and is highly resistant to XSS attacks.In order to ensure the security of the server's information,the proposed hybrid approach is demonstrated in a real-time environment. 展开更多
关键词 Machine learning Deep neural networks Classification Stacking ensemble XSS attack URL encoding JScript/JavaScript Web security
下载PDF
PDA移动信息技术指导下的优化护理流程在急诊病房护理管理中的应用
15
作者 赵鑫 《临床研究》 2024年第10期159-161,共3页
目的 探究个人数字助理(PDA)移动信息技术指导下的优化护理流程在急诊病房护理管理中的应用效果。方法 选取2021年1月至2023年1月期间在本院急诊病房接受治疗的98例患者,应用随机数表法将其分为对照组及观察组,各49例,对照组接受常规护... 目的 探究个人数字助理(PDA)移动信息技术指导下的优化护理流程在急诊病房护理管理中的应用效果。方法 选取2021年1月至2023年1月期间在本院急诊病房接受治疗的98例患者,应用随机数表法将其分为对照组及观察组,各49例,对照组接受常规护理,观察组接受PDA移动信息技术指导下的优化护理流程,对比两组护理效率、不良事件发生率、护理满意度评分。结果 观察组护理信息核对时间、护理评估时间、体征数据采集时间均短于对照组,差异均有统计学意义(P <0.05)。观察组不良事件发生率低于对照组,差异具有统计学意义(P <0.05)。观察组护理流程、护理技术、护患沟通、行为仪表满意度评分均高于对照组,差异均有统计学意义(P <0.05)。结论 急诊病房护理管理中采用PDA移动信息技术指导下的优化护理流程,可提高护理工作效率,减少风险事件,提高护理满意度。 展开更多
关键词 pda移动信息技术 优化护理流程 急诊病房 护理管理
下载PDF
PDA/GO/PUF聚氨酯泡沫的力学与隔热性能及其微观机理
16
作者 刘世盟 郭乃胜 +2 位作者 崔世超 褚召阳 赵近川 《材料导报》 EI CAS CSCD 北大核心 2024年第22期269-277,共9页
为研究聚多巴胺/氧化石墨烯/软质聚氨酯泡沫(PDA/GO/PUF)的力学与隔热性能,采用一种新工艺制备了PDA/GO/PUF,利用压缩实验和接触角测试对PDA/GO/PUF的物理力学性能进行了测试,利用红外热像仪和燃烧实验对PDA/GO/PUF的隔热性能进行了表征... 为研究聚多巴胺/氧化石墨烯/软质聚氨酯泡沫(PDA/GO/PUF)的力学与隔热性能,采用一种新工艺制备了PDA/GO/PUF,利用压缩实验和接触角测试对PDA/GO/PUF的物理力学性能进行了测试,利用红外热像仪和燃烧实验对PDA/GO/PUF的隔热性能进行了表征,并通过热重(TG)、扫描电子显微镜(SEM)和傅里叶红外光谱(FTIR)进行了微观机理解释。结果表明:在循环荷载作用下,PDA/GO/PUF复合材料未产生永久变形,且具有较小的能量损失系数、较大的最大应力、较平稳的压缩强度和杨氏模量,表现出优异的力学稳定性和抗疲劳性能;PDA/GO/PUF表面疏水性能相较于PUF有显著提升,接触角增大了13.83°;PDA/GO/PUF较PUF表现出更优异、更稳定的隔热效果,且在燃烧过程中没有出现熔滴现象;在GO/PUF泡沫表面自聚合形成的PDA纳米涂层具有优异的黏附性,能够将脱离GO/PUF的GO颗粒也吸附在PDA/GO/PUF表面;PDA/GO/PUF在燃烧过程中形成了致密的炭层,有效地隔绝了热量并降低了PDA/GO/PUF的热分解速率,与PUF相比,其T_(-50%)分解温度提升了240℃,残炭量提升了21.65%,显著增强了材料的热稳定性;PDA/GO/PUF分别在1420 cm^(-1)和1714 cm^(-1)处出现了属于PDA涂层的N-H弯曲振动特征峰和GO的C=O伸缩振动特征峰,进一步证实了PDA/GO/PUF的成功制备。 展开更多
关键词 聚多巴胺 pda/GO/PUF聚氨酯泡沫 力学性能 隔热性能 微观机理
下载PDF
Phishing Attacks Detection Using EnsembleMachine Learning Algorithms
17
作者 Nisreen Innab Ahmed Abdelgader Fadol Osman +4 位作者 Mohammed Awad Mohammed Ataelfadiel Marwan Abu-Zanona Bassam Mohammad Elzaghmouri Farah H.Zawaideh Mouiad Fadeil Alawneh 《Computers, Materials & Continua》 SCIE EI 2024年第7期1325-1345,共21页
Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise ... Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise in phishing attacks.Moreover,these fraudulent schemes are progressively becoming more intricate,thereby rendering them more challenging to identify.Hence,it is imperative to utilize sophisticated algorithms to address this issue.Machine learning is a highly effective approach for identifying and uncovering these harmful behaviors.Machine learning(ML)approaches can identify common characteristics in most phishing assaults.In this paper,we propose an ensemble approach and compare it with six machine learning techniques to determine the type of website and whether it is normal or not based on two phishing datasets.After that,we used the normalization technique on the dataset to transform the range of all the features into the same range.The findings of this paper for all algorithms are as follows in the first dataset based on accuracy,precision,recall,and F1-score,respectively:Decision Tree(DT)(0.964,0.961,0.976,0.968),Random Forest(RF)(0.970,0.964,0.984,0.974),Gradient Boosting(GB)(0.960,0.959,0.971,0.965),XGBoost(XGB)(0.973,0.976,0.976,0.976),AdaBoost(0.934,0.934,0.950,0.942),Multi Layer Perceptron(MLP)(0.970,0.971,0.976,0.974)and Voting(0.978,0.975,0.987,0.981).So,the Voting classifier gave the best results.While in the second dataset,all the algorithms gave the same results in four evaluation metrics,which indicates that each of them can effectively accomplish the prediction process.Also,this approach outperformed the previous work in detecting phishing websites with high accuracy,a lower false negative rate,a shorter prediction time,and a lower false positive rate. 展开更多
关键词 Social engineering attackS phishing attacks machine learning SECURITY artificial intelligence
下载PDF
Evaluating the Efficacy of Latent Variables in Mitigating Data Poisoning Attacks in the Context of Bayesian Networks:An Empirical Study
18
作者 Shahad Alzahrani Hatim Alsuwat Emad Alsuwat 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1635-1654,共20页
Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent ... Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data. 展开更多
关键词 Bayesian networks data poisoning attacks latent variables structure learning algorithms adversarial attacks
下载PDF
Termite Attack and Damage in Cocoa Plantations in Daloa Department, Central-Western Côte d’Ivoire
19
作者 Yao Martin Siapo Ehui Joachim Ano +1 位作者 Yao Kan Séraphin Diby Annick Yamousso Tahiri 《American Journal of Plant Sciences》 CAS 2024年第10期996-1009,共14页
Cocoa farming faces numerous constraints that affect production levels. Among these constraints are termites, one of the biggest scourges in tropical agriculture and agroforestry. The aim of this study is to assess th... Cocoa farming faces numerous constraints that affect production levels. Among these constraints are termites, one of the biggest scourges in tropical agriculture and agroforestry. The aim of this study is to assess the level of damage caused by termites in cocoa plantations. To this end, 3 plantations were selected. In each of the 3 plantations, 18 plots containing an average of 47 ± 6 cocoa plants were delimited. Sampling was based on 25 cocoa plants per plot. The study consisted in sampling the termites observed on the plants and noting the type of damage caused by them, taking into account the density of the harvest veneers and, above all, the termites’ progress through the anatomical structures of the plant, i.e. the bark, sapwood and heartwood. A total of 8 termite species were collected from cocoa plants. These species are responsible for four types of damage (D1, D2, D3 and D4), grouped into minor damage (D1 and D2) and major damage (D3 and D4). D1 damage ranged from 24.67% ± 5.64% to 39.55% ± 7.43%. D2 damage ranged from 6.88% ± 1.31% to 9.33% ± 2.79%. D3 damage ranged from 2.88% ± 1.55% to 6.44% ± 1.55%. D4 damage ranged from 1.11% ± 1% to 3.11% ± 1.37%. Among the termite species collected, Microcerotermes sp, C. sjostedti, A. crucifer and P. militaris were the most formidable on cocoa trees in our study locality. In view of the extensive damage caused by termites, biological control measures should be considered, using insecticidal plants. 展开更多
关键词 TERMITES attackS DAMAGE Cocoa Trees Côte d’Ivoire
下载PDF
Countermeasure against blinding attack for single-photon detectors in quantum key distribution
20
作者 Lianjun Jiang Dongdong Li +12 位作者 Yuqiang Fang Meisheng Zhao Ming Liu Zhilin Xie Yukang Zhao Yanlin Tang Wei Jiang Houlin Fang Rui Ma Lei Cheng Weifeng Yang Songtao Han Shibiao Tang 《Journal of Semiconductors》 EI CAS CSCD 2024年第4期76-81,共6页
Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting sin... Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting single-photon detectors.Here,we propose a concise,robust defense strategy for protecting single-photon detectors in QKD systems against blinding attacks.Our strategy uses a dual approach:detecting the bias current of the avalanche photodiode(APD)to defend against con-tinuous-wave blinding attacks,and monitoring the avalanche amplitude to protect against pulsed blinding attacks.By integrat-ing these two branches,the proposed solution effectively identifies and mitigates a wide range of bright light injection attempts,significantly enhancing the resilience of QKD systems against various bright-light blinding attacks.This method forti-fies the safeguards of quantum communications and offers a crucial contribution to the field of quantum information security. 展开更多
关键词 quantum key distribution single photon detector blinding attack pulsed blinding attack COUNTERMEASURE quan-tum communication
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部