In this paper, a class of augmented Lagrangiaus of Di Pillo and Grippo (DGALs) was considered, for solving equality-constrained problems via unconstrained minimization techniques. The relationship was further discus...In this paper, a class of augmented Lagrangiaus of Di Pillo and Grippo (DGALs) was considered, for solving equality-constrained problems via unconstrained minimization techniques. The relationship was further discussed between the uneonstrained minimizers of DGALs on the product space of problem variables and multipliers, and the solutions of the eonstrained problem and the corresponding values of the Lagrange multipliers. The resulting properties indicate more precisely that this class of DGALs is exact multiplier penalty functions. Therefore, a solution of the equslity-constralned problem and the corresponding values of the Lagrange multipliers can be found by performing a single unconstrained minimization of a DGAL on the product space of problem variables and multipliers.展开更多
An exact augmented Lagrangian function for the nonlinear nonconvex programming problems with inequality constraints was discussed. Under suitable hypotheses, the relationship was established between the local unconstr...An exact augmented Lagrangian function for the nonlinear nonconvex programming problems with inequality constraints was discussed. Under suitable hypotheses, the relationship was established between the local unconstrained minimizers of the augmented Lagrangian function on the space of problem variables and the local minimizers of the original constrained problem. Furthermore, under some assumptions, the relationship was also established between the global solutions of the augmented Lagrangian function on some compact subset of the space of problem variables and the global solutions of the constrained problem. Therefore, f^om the theoretical point of view, a solution of the inequality constrained problem and the corresponding values of the Lagrange multipliers can be found by the well-known method of multipliers which resort to the unconstrained minimization of the augmented Lagrangian function presented.展开更多
This paper formulates a two-dimensional strip packing problem as a non- linear programming (NLP) problem and establishes the first-order optimality conditions for the NLP problem. A numerical algorithm for solving t...This paper formulates a two-dimensional strip packing problem as a non- linear programming (NLP) problem and establishes the first-order optimality conditions for the NLP problem. A numerical algorithm for solving this NLP problem is given to find exact solutions to strip-packing problems involving up to 10 items. Approximate solutions can be found for big-sized problems by decomposing the set of items into small-sized blocks of which each block adopts the proposed numerical algorithm. Numerical results show that the approximate solutions to big-sized problems obtained by this method are superior to those by NFDH, FFDH and BFDH approaches.展开更多
In this paper, we propose and analyze an accelerated augmented Lagrangian method(denoted by AALM) for solving the linearly constrained convex programming. We show that the convergence rate of AALM is O(1/k^2) whil...In this paper, we propose and analyze an accelerated augmented Lagrangian method(denoted by AALM) for solving the linearly constrained convex programming. We show that the convergence rate of AALM is O(1/k^2) while the convergence rate of the classical augmented Lagrangian method(ALM) is O1 k. Numerical experiments on the linearly constrained 1-2minimization problem are presented to demonstrate the effectiveness of AALM.展开更多
The augmented Lagrangian function and the corresponding augmented Lagrangian method are constructed for solving a class of minimax optimization problems with equality constraints.We prove that,under the linear indepen...The augmented Lagrangian function and the corresponding augmented Lagrangian method are constructed for solving a class of minimax optimization problems with equality constraints.We prove that,under the linear independence constraint qualification and the second-order sufficiency optimality condition for the lower level problem and the second-order sufficiency optimality condition for the minimax problem,for a given multiplier vectorμ,the rate of convergence of the augmented Lagrangian method is linear with respect to||μu-μ^(*)||and the ratio constant is proportional to 1/c when the ratio|μ-μ^(*)||/c is small enough,where c is the penalty parameter that exceeds a threshold c_(*)>O andμ^(*)is the multiplier corresponding to a local minimizer.Moreover,we prove that the sequence of multiplier vectors generated by the augmented Lagrangian method has at least Q-linear convergence if the sequence of penalty parameters(ck)is bounded and the convergence rate is superlinear if(ck)is increasing to infinity.Finally,we use a direct way to establish the rate of convergence of the augmented Lagrangian method for the minimax problem with a quadratic objective function and linear equality constraints.展开更多
In this paper, an approximate augmented Lagrangian function for nonlinear semidefinite programs is introduced. Some basic properties of the approximate augmented Lagrange function such as monotonicity and convexity ar...In this paper, an approximate augmented Lagrangian function for nonlinear semidefinite programs is introduced. Some basic properties of the approximate augmented Lagrange function such as monotonicity and convexity are discussed. Necessary and sufficient conditions for approximate strong duality results are derived. Conditions for an approximate exact penalty representation in the framework of augmented Lagrangian are given. Under certain conditions, it is shown that any limit point of a sequence of stationary points of approximate augmented Lagrangian problems is a KKT point of the original semidefinite program and that a sequence of optimal solutions to augmented Lagrangian problems converges to a solution of the original semidefinite program.展开更多
In this paper,a fast algorithm for Euler’s elastica functional is proposed,in which the Euler’s elastica functional is reformulated as a constrained minimization problem.Combining the augmented Lagrangian method and...In this paper,a fast algorithm for Euler’s elastica functional is proposed,in which the Euler’s elastica functional is reformulated as a constrained minimization problem.Combining the augmented Lagrangian method and operator splitting techniques,the resulting saddle-point problem is solved by a serial of subproblems.To tackle the nonlinear constraints arising in the model,a novel fixed-point-based approach is proposed so that all the subproblems either is a linear problem or has a closed-form solution.We show the good performance of our approach in terms of speed and reliability using numerous numerical examples on synthetic,real-world and medical images for image denoising,image inpainting and image zooming problems.展开更多
Recently, dictionary learning(DL) based methods have been introduced to compressed sensing magnetic resonance imaging(CS-MRI), which outperforms pre-defined analytic sparse priors. However, single-scale trained dictio...Recently, dictionary learning(DL) based methods have been introduced to compressed sensing magnetic resonance imaging(CS-MRI), which outperforms pre-defined analytic sparse priors. However, single-scale trained dictionary directly from image patches is incapable of representing image features from multi-scale, multi-directional perspective, which influences the reconstruction performance. In this paper, incorporating the superior multi-scale properties of uniform discrete curvelet transform(UDCT) with the data matching adaptability of trained dictionaries, we propose a flexible sparsity framework to allow sparser representation and prominent hierarchical essential features capture for magnetic resonance(MR) images. Multi-scale decomposition is implemented by using UDCT due to its prominent properties of lower redundancy ratio, hierarchical data structure, and ease of implementation. Each sub-dictionary of different sub-bands is trained independently to form the multi-scale dictionaries. Corresponding to this brand-new sparsity model, we modify the constraint splitting augmented Lagrangian shrinkage algorithm(C-SALSA) as patch-based C-SALSA(PB C-SALSA) to solve the constraint optimization problem of regularized image reconstruction. Experimental results demonstrate that the trained sub-dictionaries at different scales, enforcing sparsity at multiple scales, can then be efficiently used for MRI reconstruction to obtain satisfactory results with further reduced undersampling rate. Multi-scale UDCT dictionaries potentially outperform both single-scale trained dictionaries and multi-scale analytic transforms. Our proposed sparsity model achieves sparser representation for reconstructed data, which results in fast convergence of reconstruction exploiting PB C-SALSA. Simulation results demonstrate that the proposed method outperforms conventional CS-MRI methods in maintaining intrinsic properties, eliminating aliasing, reducing unexpected artifacts, and removing noise. It can achieve comparable performance of reconstruction with the state-of-the-art methods even under substantially high undersampling factors.展开更多
.In this paper,an augmented Lagrangian Uzawa iterative method is developed and analyzed for solving a class of double saddle-point systems with semidefinite(2,2)block.Convergence of the iterativemethod is proved under....In this paper,an augmented Lagrangian Uzawa iterative method is developed and analyzed for solving a class of double saddle-point systems with semidefinite(2,2)block.Convergence of the iterativemethod is proved under the assumption that the double saddle-point problem exists a unique solution.An application of the iterative method to the double saddle-point systems arising from the distributed Lagrange multiplier/fictitious domain(DLM/FD)finite element method for solving elliptic interface problems is also presented,in which the existence and uniqueness of the double saddle-point system is guaranteed by the analysis of the DLM/FD finite element method.Numerical experiments are conducted to validate the theoretical results and to study the performance of the proposed iterative method.展开更多
Recently,many variational models involving high order derivatives have been widely used in image processing,because they can reduce staircase effects during noise elimination.However,it is very challenging to construc...Recently,many variational models involving high order derivatives have been widely used in image processing,because they can reduce staircase effects during noise elimination.However,it is very challenging to construct efficient algo-rithms to obtain the minimizers of original high order functionals.In this paper,we propose a new linearized augmented Lagrangian method for Euler’s elastica image denoising model.We detail the procedures of finding the saddle-points of the aug-mented Lagrangian functional.Instead of solving associated linear systems by FFTor linear iterative methods(e.g.,the Gauss-Seidel method),we adopt a linearized strat-egy to get an iteration sequence so as to reduce computational cost.In addition,we give some simple complexity analysis for the proposed method.Experimental results with comparison to the previous method are supplied to demonstrate the efficiency of the proposed method,and indicate that such a linearized augmented Lagrangian method is more suitable to deal with large-sized images.展开更多
An augmented Lagrangian trust region method with a bi=object strategy is proposed for solving nonlinear equality constrained optimization, which falls in between penalty-type methods and penalty-free ones. At each ite...An augmented Lagrangian trust region method with a bi=object strategy is proposed for solving nonlinear equality constrained optimization, which falls in between penalty-type methods and penalty-free ones. At each iteration, a trial step is computed by minimizing a quadratic approximation model to the augmented Lagrangian function within a trust region. The model is a standard trust region subproblem for unconstrained optimization and hence can efficiently be solved by many existing methods. To choose the penalty parameter, an auxiliary trust region subproblem is introduced related to the constraint violation. It turns out that the penalty parameter need not be monotonically increasing and will not tend to infinity. A bi-object strategy, which is related to the objective function and the measure of constraint violation, is utilized to decide whether the trial step will be accepted or not. Global convergence of the method is established under mild assumptions. Numerical experiments are made, which illustrate the efficiency of the algorithm on various difficult situations.展开更多
This paper is concerned with a novel deep learning method for variational problems with essential boundary conditions.To this end,wefirst reformulate the original problem into a minimax problem corresponding to a feas...This paper is concerned with a novel deep learning method for variational problems with essential boundary conditions.To this end,wefirst reformulate the original problem into a minimax problem corresponding to a feasible augmented La-grangian,which can be solved by the augmented Lagrangian method in an infinite dimensional setting.Based on this,by expressing the primal and dual variables with two individual deep neural network functions,we present an augmented Lagrangian deep learning method for which the parameters are trained by the stochastic optimiza-tion method together with a projection technique.Compared to the traditional penalty method,the new method admits two main advantages:i)the choice of the penalty parameter isflexible and robust,and ii)the numerical solution is more accurate in the same magnitude of computational cost.As typical applications,we apply the new ap-proach to solve elliptic problems and(nonlinear)eigenvalue problems with essential boundary conditions,and numerical experiments are presented to show the effective-ness of the new method.展开更多
In this paper,we propose a generalized penalization technique and a convex constraint minimization approach for the p-harmonic flow problem following the ideas in[Kang&March,IEEE T.Image Process.,16(2007),2251–22...In this paper,we propose a generalized penalization technique and a convex constraint minimization approach for the p-harmonic flow problem following the ideas in[Kang&March,IEEE T.Image Process.,16(2007),2251–2261].We use fast algorithms to solve the subproblems,such as the dual projection methods,primal-dual methods and augmented Lagrangian methods.With a special penalization term,some special algorithms are presented.Numerical experiments are given to demonstrate the performance of the proposed methods.We successfully show that our algorithms are effective and efficient due to two reasons:the solver for subproblem is fast in essence and there is no need to solve the subproblem accurately(even 2 inner iterations of the subproblem are enough).It is also observed that better PSNR values are produced using the new algorithms.展开更多
In this paper,we provide some gentle introductions to the recent advance in augmented Lagrangian methods for solving large-scale convex matrix optimization problems(cMOP).Specifically,we reviewed two types of sufficie...In this paper,we provide some gentle introductions to the recent advance in augmented Lagrangian methods for solving large-scale convex matrix optimization problems(cMOP).Specifically,we reviewed two types of sufficient conditions for ensuring the quadratic growth conditions of a class of constrained convex matrix optimization problems regularized by nonsmooth spectral functions.Under a mild quadratic growth condition on the dual of cMOP,we further discussed the R-superlinear convergence of the Karush-Kuhn-Tucker(KKT)residuals of the sequence generated by the augmented Lagrangian methods(ALM)for solving convex matrix optimization problems.Implementation details of the ALM for solving core convex matrix optimization problems are also provided.展开更多
In this paper, a Newton-conjugate gradient (CG) augmented Lagrangian method is proposed for solving the path constrained dynamic process optimization problems. The path constraints are simplified as a single final t...In this paper, a Newton-conjugate gradient (CG) augmented Lagrangian method is proposed for solving the path constrained dynamic process optimization problems. The path constraints are simplified as a single final time constraint by using a novel constraint aggregation function. Then, a control vector parameterization (CVP) approach is applied to convert the constraints simplified dynamic optimization problem into a nonlinear programming (NLP) problem with inequality constraints. By constructing an augmented Lagrangian function, the inequality constraints are introduced into the augmented objective function, and a box constrained NLP problem is generated. Then, a linear search Newton-CG approach, also known as truncated Newton (TN) approach, is applied to solve the problem. By constructing the Hamiltonian functions of objective and constraint functions, two adjoint systems are generated to calculate the gradients which are needed in the process of NLP solution. Simulation examlales demonstrate the effectiveness of the algorithm.展开更多
This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volu...This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures.展开更多
In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second...In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second-order derivative based regularizer,the model is able to alleviate the staircase effect and preserve image contrast.The augmented Lagrangian method(ALM)is utilized to minimize the associated functional and convergence analysis is established for the proposed algorithm.Numerical experiments are presented to demonstrate the features of the proposed model.展开更多
One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term produ...One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term production scheduling(LTPS)of the open-pit mines.Deterministic and uncertainty-based approaches are identified as the main strategies,which have been widely used to cope with this problem.Within the last few years,many researchers have highly considered a new computational type,which is less costly,i.e.,meta-heuristic methods,so as to solve the mine design and production scheduling problem.Although the optimality of the final solution cannot be guaranteed,they are able to produce sufficiently good solutions with relatively less computational costs.In the present paper,two hybrid models between augmented Lagrangian relaxation(ALR)and a particle swarm optimization(PSO)and ALR and bat algorithm(BA)are suggested so that the LTPS problem is solved under the condition of grade uncertainty.It is suggested to carry out the ALR method on the LTPS problem to improve its performance and accelerate the convergence.Moreover,the Lagrangian coefficients are updated by using PSO and BA.The presented models have been compared with the outcomes of the ALR-genetic algorithm,the ALR-traditional sub-gradient method,and the conventional method without using the Lagrangian approach.The results indicated that the ALR is considered a more efficient approach which can solve a large-scale problem and make a valid solution.Hence,it is more effectual than the conventional method.Furthermore,the time and cost of computation are diminished by the proposed hybrid strategies.The CPU time using the ALR-BA method is about 7.4%higher than the ALR-PSO approach.展开更多
The hydrothermal scheduling in the electric power market becomes difficult because of introducing competition and considering sorts of constraints. An augmented Lagrangian approach is adopted to solve the problem,whic...The hydrothermal scheduling in the electric power market becomes difficult because of introducing competition and considering sorts of constraints. An augmented Lagrangian approach is adopted to solve the problem,which adds to the standard Lagrangian function a quadratic penalty term without changing its dual property,and reduces the oscillation in iterations. According to the theory of large system coordination and decomposition,the problem is divided into hydro sub-problem and thermal sub-problem,which are coordinated by updating the Lagrangian multipliers,then the optimal solution is obtained. Our results for a test system show that the augmented Lagrangian approach can make the problem converge into the optimal solution quickly.展开更多
The manuscript presents an augmented Lagrangian—fast projected gradient method (ALFPGM) with an improved scheme of working set selection, pWSS, a decomposition based algorithm for training support vector classificati...The manuscript presents an augmented Lagrangian—fast projected gradient method (ALFPGM) with an improved scheme of working set selection, pWSS, a decomposition based algorithm for training support vector classification machines (SVM). The manuscript describes the ALFPGM algorithm, provides numerical results for training SVM on large data sets, and compares the training times of ALFPGM and Sequential Minimal Minimization algorithms (SMO) from Scikit-learn library. The numerical results demonstrate that ALFPGM with the improved working selection scheme is capable of training SVM with tens of thousands of training examples in a fraction of the training time of some widely adopted SVM tools.展开更多
文摘In this paper, a class of augmented Lagrangiaus of Di Pillo and Grippo (DGALs) was considered, for solving equality-constrained problems via unconstrained minimization techniques. The relationship was further discussed between the uneonstrained minimizers of DGALs on the product space of problem variables and multipliers, and the solutions of the eonstrained problem and the corresponding values of the Lagrange multipliers. The resulting properties indicate more precisely that this class of DGALs is exact multiplier penalty functions. Therefore, a solution of the equslity-constralned problem and the corresponding values of the Lagrange multipliers can be found by performing a single unconstrained minimization of a DGAL on the product space of problem variables and multipliers.
文摘An exact augmented Lagrangian function for the nonlinear nonconvex programming problems with inequality constraints was discussed. Under suitable hypotheses, the relationship was established between the local unconstrained minimizers of the augmented Lagrangian function on the space of problem variables and the local minimizers of the original constrained problem. Furthermore, under some assumptions, the relationship was also established between the global solutions of the augmented Lagrangian function on some compact subset of the space of problem variables and the global solutions of the constrained problem. Therefore, f^om the theoretical point of view, a solution of the inequality constrained problem and the corresponding values of the Lagrange multipliers can be found by the well-known method of multipliers which resort to the unconstrained minimization of the augmented Lagrangian function presented.
基金State Foundstion of Ph.D Units of China(2003-05)under Grant 20020141013the NNSF(10471015)of Liaoning Province,China.
文摘This paper formulates a two-dimensional strip packing problem as a non- linear programming (NLP) problem and establishes the first-order optimality conditions for the NLP problem. A numerical algorithm for solving this NLP problem is given to find exact solutions to strip-packing problems involving up to 10 items. Approximate solutions can be found for big-sized problems by decomposing the set of items into small-sized blocks of which each block adopts the proposed numerical algorithm. Numerical results show that the approximate solutions to big-sized problems obtained by this method are superior to those by NFDH, FFDH and BFDH approaches.
基金Supported by Fujian Natural Science Foundation(2016J01005)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB18010202)
文摘In this paper, we propose and analyze an accelerated augmented Lagrangian method(denoted by AALM) for solving the linearly constrained convex programming. We show that the convergence rate of AALM is O(1/k^2) while the convergence rate of the classical augmented Lagrangian method(ALM) is O1 k. Numerical experiments on the linearly constrained 1-2minimization problem are presented to demonstrate the effectiveness of AALM.
基金the National Natural Science Foundation of China(Nos.11991020,11631013,11971372,11991021,11971089 and 11731013)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA27000000)Dalian High-Level Talent Innovation Project(No.2020RD09)。
文摘The augmented Lagrangian function and the corresponding augmented Lagrangian method are constructed for solving a class of minimax optimization problems with equality constraints.We prove that,under the linear independence constraint qualification and the second-order sufficiency optimality condition for the lower level problem and the second-order sufficiency optimality condition for the minimax problem,for a given multiplier vectorμ,the rate of convergence of the augmented Lagrangian method is linear with respect to||μu-μ^(*)||and the ratio constant is proportional to 1/c when the ratio|μ-μ^(*)||/c is small enough,where c is the penalty parameter that exceeds a threshold c_(*)>O andμ^(*)is the multiplier corresponding to a local minimizer.Moreover,we prove that the sequence of multiplier vectors generated by the augmented Lagrangian method has at least Q-linear convergence if the sequence of penalty parameters(ck)is bounded and the convergence rate is superlinear if(ck)is increasing to infinity.Finally,we use a direct way to establish the rate of convergence of the augmented Lagrangian method for the minimax problem with a quadratic objective function and linear equality constraints.
基金This work is partially supported by the Postdoctoral Fellowship of The Hong Kong Polytechnic Universitythe Research Grants Council of Hong Kong(PolyU B-Q890)
文摘In this paper, an approximate augmented Lagrangian function for nonlinear semidefinite programs is introduced. Some basic properties of the approximate augmented Lagrange function such as monotonicity and convexity are discussed. Necessary and sufficient conditions for approximate strong duality results are derived. Conditions for an approximate exact penalty representation in the framework of augmented Lagrangian are given. Under certain conditions, it is shown that any limit point of a sequence of stationary points of approximate augmented Lagrangian problems is a KKT point of the original semidefinite program and that a sequence of optimal solutions to augmented Lagrangian problems converges to a solution of the original semidefinite program.
文摘In this paper,a fast algorithm for Euler’s elastica functional is proposed,in which the Euler’s elastica functional is reformulated as a constrained minimization problem.Combining the augmented Lagrangian method and operator splitting techniques,the resulting saddle-point problem is solved by a serial of subproblems.To tackle the nonlinear constraints arising in the model,a novel fixed-point-based approach is proposed so that all the subproblems either is a linear problem or has a closed-form solution.We show the good performance of our approach in terms of speed and reliability using numerous numerical examples on synthetic,real-world and medical images for image denoising,image inpainting and image zooming problems.
基金Project supported by the National Natural Science Foundation of China(Nos.61175012 and 61201422)the Natural Science Foundation of Gansu Province of China(No.1208RJ-ZA265)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.2011021111-0026)the Fundamental Research Funds for the Central Universities of China(Nos.lzujbky-2015-108 and lzujbky-2015-197)
文摘Recently, dictionary learning(DL) based methods have been introduced to compressed sensing magnetic resonance imaging(CS-MRI), which outperforms pre-defined analytic sparse priors. However, single-scale trained dictionary directly from image patches is incapable of representing image features from multi-scale, multi-directional perspective, which influences the reconstruction performance. In this paper, incorporating the superior multi-scale properties of uniform discrete curvelet transform(UDCT) with the data matching adaptability of trained dictionaries, we propose a flexible sparsity framework to allow sparser representation and prominent hierarchical essential features capture for magnetic resonance(MR) images. Multi-scale decomposition is implemented by using UDCT due to its prominent properties of lower redundancy ratio, hierarchical data structure, and ease of implementation. Each sub-dictionary of different sub-bands is trained independently to form the multi-scale dictionaries. Corresponding to this brand-new sparsity model, we modify the constraint splitting augmented Lagrangian shrinkage algorithm(C-SALSA) as patch-based C-SALSA(PB C-SALSA) to solve the constraint optimization problem of regularized image reconstruction. Experimental results demonstrate that the trained sub-dictionaries at different scales, enforcing sparsity at multiple scales, can then be efficiently used for MRI reconstruction to obtain satisfactory results with further reduced undersampling rate. Multi-scale UDCT dictionaries potentially outperform both single-scale trained dictionaries and multi-scale analytic transforms. Our proposed sparsity model achieves sparser representation for reconstructed data, which results in fast convergence of reconstruction exploiting PB C-SALSA. Simulation results demonstrate that the proposed method outperforms conventional CS-MRI methods in maintaining intrinsic properties, eliminating aliasing, reducing unexpected artifacts, and removing noise. It can achieve comparable performance of reconstruction with the state-of-the-art methods even under substantially high undersampling factors.
基金supported by the 10 plus 10 project of Tongji University(No.4260141304/004/010).
文摘.In this paper,an augmented Lagrangian Uzawa iterative method is developed and analyzed for solving a class of double saddle-point systems with semidefinite(2,2)block.Convergence of the iterativemethod is proved under the assumption that the double saddle-point problem exists a unique solution.An application of the iterative method to the double saddle-point systems arising from the distributed Lagrange multiplier/fictitious domain(DLM/FD)finite element method for solving elliptic interface problems is also presented,in which the existence and uniqueness of the double saddle-point system is guaranteed by the analysis of the DLM/FD finite element method.Numerical experiments are conducted to validate the theoretical results and to study the performance of the proposed iterative method.
基金supported by the NNSF of China grants 11526110,11271069,61362036 and 61461032,the 863 Program of China grant 2015AA01A302the Open Research Fund of Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing(2016WICSIP013)the Youth Foundation of Nanchang Institute of Technology(2014KJ021).
文摘Recently,many variational models involving high order derivatives have been widely used in image processing,because they can reduce staircase effects during noise elimination.However,it is very challenging to construct efficient algo-rithms to obtain the minimizers of original high order functionals.In this paper,we propose a new linearized augmented Lagrangian method for Euler’s elastica image denoising model.We detail the procedures of finding the saddle-points of the aug-mented Lagrangian functional.Instead of solving associated linear systems by FFTor linear iterative methods(e.g.,the Gauss-Seidel method),we adopt a linearized strat-egy to get an iteration sequence so as to reduce computational cost.In addition,we give some simple complexity analysis for the proposed method.Experimental results with comparison to the previous method are supplied to demonstrate the efficiency of the proposed method,and indicate that such a linearized augmented Lagrangian method is more suitable to deal with large-sized images.
文摘An augmented Lagrangian trust region method with a bi=object strategy is proposed for solving nonlinear equality constrained optimization, which falls in between penalty-type methods and penalty-free ones. At each iteration, a trial step is computed by minimizing a quadratic approximation model to the augmented Lagrangian function within a trust region. The model is a standard trust region subproblem for unconstrained optimization and hence can efficiently be solved by many existing methods. To choose the penalty parameter, an auxiliary trust region subproblem is introduced related to the constraint violation. It turns out that the penalty parameter need not be monotonically increasing and will not tend to infinity. A bi-object strategy, which is related to the objective function and the measure of constraint violation, is utilized to decide whether the trial step will be accepted or not. Global convergence of the method is established under mild assumptions. Numerical experiments are made, which illustrate the efficiency of the algorithm on various difficult situations.
基金supported by the National Key Research and Development Project(Grant No.2020YFA0709800)NSFC(Grant No.12071289)+4 种基金Shanghai Municipal Science and Technology Major Project(2021SHZDZX0102)supported by the National Key R&D Program of China(2020YFA0712000)NSFC(under grant numbers 11822111,11688101)the science challenge project(No.TZ2018001)youth innovation promotion association(CAS).
文摘This paper is concerned with a novel deep learning method for variational problems with essential boundary conditions.To this end,wefirst reformulate the original problem into a minimax problem corresponding to a feasible augmented La-grangian,which can be solved by the augmented Lagrangian method in an infinite dimensional setting.Based on this,by expressing the primal and dual variables with two individual deep neural network functions,we present an augmented Lagrangian deep learning method for which the parameters are trained by the stochastic optimiza-tion method together with a projection technique.Compared to the traditional penalty method,the new method admits two main advantages:i)the choice of the penalty parameter isflexible and robust,and ii)the numerical solution is more accurate in the same magnitude of computational cost.As typical applications,we apply the new ap-proach to solve elliptic problems and(nonlinear)eigenvalue problems with essential boundary conditions,and numerical experiments are presented to show the effective-ness of the new method.
基金The authors’research was supported by MOE IDM project NRF2007IDM-IDM002-010,SingaporeThe first author was partially supported by PHD Program Scholarship Fund of ECNU with Grant No.2010026Overseas Research Fund of East China Normal University,China.Discussions with Dr.Zhifeng Pang,Dr.Haixia Liang and Dr.Yuping Duan are helpful.
文摘In this paper,we propose a generalized penalization technique and a convex constraint minimization approach for the p-harmonic flow problem following the ideas in[Kang&March,IEEE T.Image Process.,16(2007),2251–2261].We use fast algorithms to solve the subproblems,such as the dual projection methods,primal-dual methods and augmented Lagrangian methods.With a special penalization term,some special algorithms are presented.Numerical experiments are given to demonstrate the performance of the proposed methods.We successfully show that our algorithms are effective and efficient due to two reasons:the solver for subproblem is fast in essence and there is no need to solve the subproblem accurately(even 2 inner iterations of the subproblem are enough).It is also observed that better PSNR values are produced using the new algorithms.
基金Chao Ding’s research was supported by the National Natural Science Foundation of China(Nos.11671387,11531014,and 11688101)Beijing Natural Science Foundation(No.Z190002)+6 种基金Xu-Dong Li’s research was supported by the National Key R&D Program of China(No.2020YFA0711900)the National Natural Science Foundation of China(No.11901107)the Young Elite Scientists Sponsorship Program by CAST(No.2019QNRC001)the Shanghai Sailing Program(No.19YF1402600)the Science and Technology Commission of Shanghai Municipality Project(No.19511120700)Xin-Yuan Zhao’s research was supported by the National Natural Science Foundation of China(No.11871002)the General Program of Science and Technology of Beijing Municipal Education Commission(No.KM201810005004).
文摘In this paper,we provide some gentle introductions to the recent advance in augmented Lagrangian methods for solving large-scale convex matrix optimization problems(cMOP).Specifically,we reviewed two types of sufficient conditions for ensuring the quadratic growth conditions of a class of constrained convex matrix optimization problems regularized by nonsmooth spectral functions.Under a mild quadratic growth condition on the dual of cMOP,we further discussed the R-superlinear convergence of the Karush-Kuhn-Tucker(KKT)residuals of the sequence generated by the augmented Lagrangian methods(ALM)for solving convex matrix optimization problems.Implementation details of the ALM for solving core convex matrix optimization problems are also provided.
基金supported by the Natural Science Foundation of China (No. 60974039)the National Science and Technology Major Project (No.2008ZX05011)
文摘In this paper, a Newton-conjugate gradient (CG) augmented Lagrangian method is proposed for solving the path constrained dynamic process optimization problems. The path constraints are simplified as a single final time constraint by using a novel constraint aggregation function. Then, a control vector parameterization (CVP) approach is applied to convert the constraints simplified dynamic optimization problem into a nonlinear programming (NLP) problem with inequality constraints. By constructing an augmented Lagrangian function, the inequality constraints are introduced into the augmented objective function, and a box constrained NLP problem is generated. Then, a linear search Newton-CG approach, also known as truncated Newton (TN) approach, is applied to solve the problem. By constructing the Hamiltonian functions of objective and constraint functions, two adjoint systems are generated to calculate the gradients which are needed in the process of NLP solution. Simulation examlales demonstrate the effectiveness of the algorithm.
基金This study is financially supported by StateKey Laboratory of Alternate Electrical Power System with Renewable Energy Sources(Grant No.LAPS22012).
文摘This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures.
文摘In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second-order derivative based regularizer,the model is able to alleviate the staircase effect and preserve image contrast.The augmented Lagrangian method(ALM)is utilized to minimize the associated functional and convergence analysis is established for the proposed algorithm.Numerical experiments are presented to demonstrate the features of the proposed model.
文摘One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term production scheduling(LTPS)of the open-pit mines.Deterministic and uncertainty-based approaches are identified as the main strategies,which have been widely used to cope with this problem.Within the last few years,many researchers have highly considered a new computational type,which is less costly,i.e.,meta-heuristic methods,so as to solve the mine design and production scheduling problem.Although the optimality of the final solution cannot be guaranteed,they are able to produce sufficiently good solutions with relatively less computational costs.In the present paper,two hybrid models between augmented Lagrangian relaxation(ALR)and a particle swarm optimization(PSO)and ALR and bat algorithm(BA)are suggested so that the LTPS problem is solved under the condition of grade uncertainty.It is suggested to carry out the ALR method on the LTPS problem to improve its performance and accelerate the convergence.Moreover,the Lagrangian coefficients are updated by using PSO and BA.The presented models have been compared with the outcomes of the ALR-genetic algorithm,the ALR-traditional sub-gradient method,and the conventional method without using the Lagrangian approach.The results indicated that the ALR is considered a more efficient approach which can solve a large-scale problem and make a valid solution.Hence,it is more effectual than the conventional method.Furthermore,the time and cost of computation are diminished by the proposed hybrid strategies.The CPU time using the ALR-BA method is about 7.4%higher than the ALR-PSO approach.
基金the Specialized Research Fund for the Doctoral Program of High Education(Grant No.20050213006) the Key Science Research Project of Heilongjiang Province(Grant No.GD07A304).
文摘The hydrothermal scheduling in the electric power market becomes difficult because of introducing competition and considering sorts of constraints. An augmented Lagrangian approach is adopted to solve the problem,which adds to the standard Lagrangian function a quadratic penalty term without changing its dual property,and reduces the oscillation in iterations. According to the theory of large system coordination and decomposition,the problem is divided into hydro sub-problem and thermal sub-problem,which are coordinated by updating the Lagrangian multipliers,then the optimal solution is obtained. Our results for a test system show that the augmented Lagrangian approach can make the problem converge into the optimal solution quickly.
文摘The manuscript presents an augmented Lagrangian—fast projected gradient method (ALFPGM) with an improved scheme of working set selection, pWSS, a decomposition based algorithm for training support vector classification machines (SVM). The manuscript describes the ALFPGM algorithm, provides numerical results for training SVM on large data sets, and compares the training times of ALFPGM and Sequential Minimal Minimization algorithms (SMO) from Scikit-learn library. The numerical results demonstrate that ALFPGM with the improved working selection scheme is capable of training SVM with tens of thousands of training examples in a fraction of the training time of some widely adopted SVM tools.