期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effects of Quenching Process on Microstructure and Mechanical Properties of Low Carbon Nb-Ti Microalloyed Steel 被引量:2
1
作者 Wen-Zhen Xia Xian-Ming Zhao +1 位作者 Xiao-Ming Zhang Di Wu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第4期73-77,共5页
The low carbon Nb-Ti mieroalloyed tested steel was prepared by the process of vacuum induction furnace smelting, forging and hot rolling. The new steel aims to meet the demand of high strength, high toughness and high... The low carbon Nb-Ti mieroalloyed tested steel was prepared by the process of vacuum induction furnace smelting, forging and hot rolling. The new steel aims to meet the demand of high strength, high toughness and high plasticity for building facilities. The effects of quenching process on microstructure and mechanical properties of tested steel were investigated. The results showed that prior austenite grain size, phase type and precipitation behavior of ( Nb, Ti) ( C, N) play important roles in mechanical properties of the steel. Through modified appropriately, the model of austenite grain growth during heating and holding is d^5.7778 = 5. 6478^5.7778 + 7.04 × 10^22t^1.6136 exp(- 427. 15 ×10^3 /(RT)). The grain growth activation energy is Qg = 427. 15 kJ. During quenching, the microscopic structures are mainly martensite and lath bainite which contains lots of lath substructure and dislocations. The content of phases, fine and coarsening ( Nb, Ti ) ( C, N ) precipitated changes during different quenching temperatures and holding time. Finally compared with the hardness value, the best quenching process can be obtained that heating temperature and holding time are 900 ℃ and 50 mins, respectively. 展开更多
关键词 low carbon Nb-Ti mieroalloyed steel quenching process austenite grain growth model microstructure and mechanical properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部