期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Review Authorship Attribution in a Similarity Space 被引量:1
1
作者 钱铁云 刘兵 +1 位作者 李青 司建锋 《Journal of Computer Science & Technology》 SCIE EI CSCD 2015年第1期200-213,共14页
Authorship attribution, also known as authorship classification, is the problem of identifying the authors (reviewers) of a set of documents (reviews). The common approach is to build a classifier using supervised... Authorship attribution, also known as authorship classification, is the problem of identifying the authors (reviewers) of a set of documents (reviews). The common approach is to build a classifier using supervised learning. This approach has several issues which hurts its applicability. First, supervised learning needs a large set of documents from each author to serve as the training data. This can be difficult in practice. For example, in the online review domain, most reviewers (authors) only write a few reviews, which are not enough to serve as the training data. Second, the learned classifier cannot be applied to authors whose documents have not been used in training. In this article, we propose a novel solution to deal with the two problems. The core idea is that instead of learning in the original document space, we transform it to a similarity space. In the similarity space, the learning is able to naturally tackle the issues. Our experiment results based on online reviews and reviewers show that the proposed method outperforms the state-of-the-art supervised and unsupervised baseline methods significantly. 展开更多
关键词 authorship attribution supervised learning similarity space
原文传递
基于特征空间相似的隐形后门攻击
2
作者 夏辉 钱祥运 《信息网络安全》 CSCD 北大核心 2024年第8期1163-1172,共10页
后门攻击指通过在深度神经网络模型训练过程中对原模型植入特定的触发器,导致模型误判的攻击。目前后门攻击方案普遍面临触发器隐蔽性差、攻击成功率低、投毒效率低与中毒模型易被检测的问题。为解决上述问题,文章在监督学习模式下,提... 后门攻击指通过在深度神经网络模型训练过程中对原模型植入特定的触发器,导致模型误判的攻击。目前后门攻击方案普遍面临触发器隐蔽性差、攻击成功率低、投毒效率低与中毒模型易被检测的问题。为解决上述问题,文章在监督学习模式下,提出一种基于特征空间相似理论的模型反演隐形后门攻击方案。该方案首先通过基于训练的模型反演方法和一组随机的目标标签类别样本获得原始触发器。然后,通过Attention U-Net网络对良性样本进行特征区域分割,在重点区域添加原始触发器,并对生成的中毒样本进行优化,提高了触发器的隐蔽性和投毒效率。通过图像增强算法扩充中毒数据集后,对原始模型再训练,生成中毒模型。实验结果表明,该方案在保证触发器隐蔽性的前提下,在GTSRB和CelebA数据集中以1%的投毒比例达到97%的攻击成功率。同时,该方案保证了目标样本与中毒样本在特征空间内相似性,生成的中毒模型能够成功逃脱防御算法检测,提高了中毒模型的不可分辨性。通过对该方案进行深入分析,也可为防御此类后门攻击提供思路。 展开更多
关键词 数据投毒 后门攻击 特征空间相似 监督学习
下载PDF
一种深度自监督聚类集成算法 被引量:6
3
作者 杜航原 张晶 王文剑 《智能系统学报》 CSCD 北大核心 2020年第6期1113-1120,共8页
针对聚类集成中一致性函数设计问题,本文提出一种深度自监督聚类集成算法。该算法首先根据基聚类划分结果采用加权连通三元组算法计算样本之间的相似度矩阵,基于相似度矩阵表达邻接关系,将基聚类由特征空间中的数据表示变换至图数据表示... 针对聚类集成中一致性函数设计问题,本文提出一种深度自监督聚类集成算法。该算法首先根据基聚类划分结果采用加权连通三元组算法计算样本之间的相似度矩阵,基于相似度矩阵表达邻接关系,将基聚类由特征空间中的数据表示变换至图数据表示;在此基础上,基聚类的一致性集成问题被转化为对基聚类图数据表示的图聚类问题。为此,本文利用图神经网络构造自监督聚类集成模型,一方面采用图自动编码器学习图的低维嵌入,依据低维嵌入似然分布估计聚类集成的目标分布;另一方面利用聚类集成目标对低维嵌入过程进行指导,确保模型获得的图低维嵌入与聚类集成结果是一致最优的。在大量数据集上进行了仿真实验,结果表明本文算法相比HGPA、CSPA和MCLA等算法可以进一步提高聚类集成结果的准确性。 展开更多
关键词 特征空间 聚类算法 一致性函数 图表示 相似性度量 自监督学习 图数据 神经网络模型
下载PDF
基于三维卷积和哈希方法的视频检索算法 被引量:1
4
作者 陈汗青 李菲菲 陈虬 《电子科技》 2022年第4期35-39,66,共6页
视频信息检索与其他多媒体检索的最大不同在于视频信息量较大,因此进行视频间相似度计算时的计算量较大。此外,对视频特征的提取中常常忽略视频帧之间的时间相关性,从而导致特征提取不充分,影响视频检索的精度。为此,文中提出基于三维... 视频信息检索与其他多媒体检索的最大不同在于视频信息量较大,因此进行视频间相似度计算时的计算量较大。此外,对视频特征的提取中常常忽略视频帧之间的时间相关性,从而导致特征提取不充分,影响视频检索的精度。为此,文中提出基于三维卷积和哈希方法的视频检索方法。该方法构建了一个端到端的框架,使用三维卷积神经网络来提取视频中代表帧的特征,并将视频特征映射到低维的汉明空间中去,在汉明空间计算相似度。在两个视频数据集下的实验结果表明,相较于当前最新的视频检索算法,文中所提方法在精度上有较大的提升。 展开更多
关键词 视频检索 三维卷积 特征表示 哈希方法 监督学习 特征降维 汉明空间 相似度匹配
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部