期刊文献+
共找到1,014篇文章
< 1 2 51 >
每页显示 20 50 100
有限元模拟和神经网络相结合的喷丸处理SAE9254钢疲劳寿命预测
1
作者 申建国 汪舟 +6 位作者 卢伟 罗素晖 王晓丽 罗雄 郑文文 汪帆星 张旭 《机械工程材料》 CAS CSCD 北大核心 2024年第7期77-84,共8页
采用ABAQUS有限元软件建立基于Python脚本的随机多弹丸喷丸模型,对不同弹丸直径、不同弹丸速度和不同喷丸覆盖率下喷丸处理后悬架弹簧用SAE9254钢的残余应力分布和表面粗糙度进行预测,并与试验结果进行对比;基于有限元模拟结果结合神经... 采用ABAQUS有限元软件建立基于Python脚本的随机多弹丸喷丸模型,对不同弹丸直径、不同弹丸速度和不同喷丸覆盖率下喷丸处理后悬架弹簧用SAE9254钢的残余应力分布和表面粗糙度进行预测,并与试验结果进行对比;基于有限元模拟结果结合神经网络模型对试验钢的疲劳寿命进行预测,并进行试验验证。结果表明:模拟得到SAE9254钢的残余应力沿深度方向的变化曲线与试验结果吻合较好,最大残余压应力的相对误差约为14.77%,表面粗糙度的相对误差约为3.18%,建立的随机多弹丸喷丸模型能够准确地预测SAE9254钢喷丸后的残余应力分布及表面粗糙度。采用有限元模拟与神经网络相结合的方法得到的疲劳寿命预测值和试验值的平均相对误差为6.85%,该方法可以准确地预测SAE9254钢的疲劳寿命。 展开更多
关键词 sae9254钢 喷丸 表面粗糙度 有限元模拟 神经网络 疲劳寿命
下载PDF
An Efficient Encryption and Compression of Sensed IoT Medical Images Using Auto-Encoder
2
作者 Passent El-kafrawy Maie Aboghazalah +2 位作者 Abdelmoty M.Ahmed Hanaa Torkey Ayman El-Sayed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期909-926,共18页
Healthcare systems nowadays depend on IoT sensors for sending data over the internet as a common practice.Encryption ofmedical images is very important to secure patient information.Encrypting these images consumes a ... Healthcare systems nowadays depend on IoT sensors for sending data over the internet as a common practice.Encryption ofmedical images is very important to secure patient information.Encrypting these images consumes a lot of time onedge computing;therefore,theuse of anauto-encoder for compressionbefore encodingwill solve such a problem.In this paper,we use an auto-encoder to compress amedical image before encryption,and an encryption output(vector)is sent out over the network.On the other hand,a decoder was used to reproduce the original image back after the vector was received and decrypted.Two convolutional neural networks were conducted to evaluate our proposed approach:The first one is the auto-encoder,which is utilized to compress and encrypt the images,and the other assesses the classification accuracy of the image after decryption and decoding.Different hyperparameters of the encoder were tested,followed by the classification of the image to verify that no critical information was lost,to test the encryption and encoding resolution.In this approach,sixteen hyperparameter permutations are utilized,but this research discusses three main cases in detail.The first case shows that the combination of Mean Square Logarithmic Error(MSLE),ADAgrad,two layers for the auto-encoder,and ReLU had the best auto-encoder results with a Mean Absolute Error(MAE)=0.221 after 50 epochs and 75%classification with the best result for the classification algorithm.The second case shows the reflection of auto-encoder results on the classification results which is a combination ofMean Square Error(MSE),RMSprop,three layers for the auto-encoder,and ReLU,which had the best classification accuracy of 65%,the auto-encoder gives MAE=0.31 after 50 epochs.The third case is the worst,which is the combination of the hinge,RMSprop,three layers for the auto-encoder,and ReLU,providing accuracy of 20%and MAE=0.485. 展开更多
关键词 auto-encoder CLOUD image encryption IOT healthcare
下载PDF
Deep Learning-Based Stacked Auto-Encoder with Dynamic Differential Annealed Optimization for Skin Lesion Diagnosis
3
作者 Ahmad Alassaf 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期2773-2789,共17页
Intelligent diagnosis approaches with shallow architectural models play an essential role in healthcare.Deep Learning(DL)models with unsupervised learning concepts have been proposed because high-quality feature extra... Intelligent diagnosis approaches with shallow architectural models play an essential role in healthcare.Deep Learning(DL)models with unsupervised learning concepts have been proposed because high-quality feature extraction and adequate labelled details significantly influence shallow models.On the other hand,skin lesionbased segregation and disintegration procedures play an essential role in earlier skin cancer detection.However,artefacts,an unclear boundary,poor contrast,and different lesion sizes make detection difficult.To address the issues in skin lesion diagnosis,this study creates the UDLS-DDOA model,an intelligent Unsupervised Deep Learning-based Stacked Auto-encoder(UDLS)optimized by Dynamic Differential Annealed Optimization(DDOA).Pre-processing,segregation,feature removal or separation,and disintegration are part of the proposed skin lesion diagnosis model.Pre-processing of skin lesion images occurs at the initial level for noise removal in the image using the Top hat filter and painting methodology.Following that,a Fuzzy C-Means(FCM)segregation procedure is performed using a Quasi-Oppositional Elephant Herd Optimization(QOEHO)algorithm.Besides,a novel feature extraction technique using the UDLS technique is applied where the parameter tuning takes place using DDOA.In the end,the disintegration procedure would be accomplished using a SoftMax(SM)classifier.The UDLS-DDOA model is tested against the International Skin Imaging Collaboration(ISIC)dataset,and the experimental results are examined using various computational attributes.The simulation results demonstrated that the UDLS-DDOA model outperformed the compared methods significantly. 展开更多
关键词 Intelligent diagnosis stacked auto-encoder skin lesion unsupervised learning parameter selection
下载PDF
体育器材SAE1008低碳钢高速磨削砂轮工艺优化
4
作者 张楠 李强 《机械设计与制造》 北大核心 2024年第8期223-226,231,共5页
利用CBN砂轮高速磨削处理技术,对体育器材用SAE1008钢开展单因素测试,对比了不同磨削工艺下表层残余应力变化特征,并分析了相关影响因素。研究结果表明:当砂轮线速度到达60m/s时,获得了较大切向力,残余压应力相对其它工艺条件明显减小... 利用CBN砂轮高速磨削处理技术,对体育器材用SAE1008钢开展单因素测试,对比了不同磨削工艺下表层残余应力变化特征,并分析了相关影响因素。研究结果表明:当砂轮线速度到达60m/s时,获得了较大切向力,残余压应力相对其它工艺条件明显减小。当砂轮进给速增大后,形成线性降低的残余压应力,获得了更大比磨削能和更小残余压应力。位于(0.5~0.6)mm/min范围内呈现拉应力状态,应力作用造成的层深介于(100~150)μm,形成了更高磨削温度。230/270砂轮相对其它砂轮在磨削阶段形成更小表面残余应力,沿深度方向也产生了残余拉应力。该研究为设计减小残余拉应力以及改善钢材工件表面组织结构完整性的高速磨削技术提供了一定的参考价值。 展开更多
关键词 高速磨削 残余应力 工艺参数 单因素测试 sae1008钢
下载PDF
Method of Multi-Mode Sensor Data Fusion with an Adaptive Deep Coupling Convolutional Auto-Encoder
5
作者 Xiaoxiong Feng Jianhua Liu 《Journal of Sensor Technology》 2023年第4期69-85,共17页
To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features e... To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features extracted synchronously by the CCAE were stacked and fed to the multi-channel convolution layers for fusion. Then, the fused data was passed to all connection layers for compression and fed to the Softmax module for classification. Finally, the coupling loss function coefficients and the network parameters were optimized through an adaptive approach using the gray wolf optimization (GWO) algorithm. Experimental comparisons showed that the proposed ADCCAE fusion model was superior to existing models for multi-mode data fusion. 展开更多
关键词 Multi-Mode Data Fusion Coupling Convolutional auto-encoder Adaptive Optimization Deep Learning
下载PDF
面向矿井提升机制动系统的SAE故障诊断方法
6
作者 闫方元 李娟莉 苗栋 《机械设计与制造》 北大核心 2024年第9期215-218,共4页
为了更充分地利用矿井提升机在运转过程中的监测数据,对制动系统进行精确诊断,提出了一种基于稀疏自动编码器(SAE)的故障诊断方法。通过模拟故障试验,获取故障数据,经标准化处理后生成训练集和测试集。并加入Dropout正则化方法对故障诊... 为了更充分地利用矿井提升机在运转过程中的监测数据,对制动系统进行精确诊断,提出了一种基于稀疏自动编码器(SAE)的故障诊断方法。通过模拟故障试验,获取故障数据,经标准化处理后生成训练集和测试集。并加入Dropout正则化方法对故障诊断模型进行了优化,根据训练结果采用梯度下降法优化模型参数。最后使用测试数据集对优化前后的诊断模型进行对比试验。结果表明,文中提出的提升机故障诊断方法,减少了过拟合现象,降低了获取标签数据的工作量,故障类型的平均分类精度能够达到96%。此方法使用提升机的监测数据,减少人为的影响,可以对矿井提升机的故障进行准确诊断。 展开更多
关键词 故障诊断 sae DROPOUT 制动系统 矿井提升机
下载PDF
Reviewing the SAE Levels of Driving Automation and Research Gaps to Accelerate the Development of a Quantum-Safe CCAM Infrastructure
7
作者 Fazal Raheman Tejas Bhagat Angel Batalla 《Journal of Transportation Technologies》 2024年第4期463-499,共37页
Based on a review of 28 Horizon Europe-funded CCAM projects, this paper studies the current state of Connected, Cooperative, and Automated Mobility (CCAM) and identifies significant research gaps in taxonomy, cybersec... Based on a review of 28 Horizon Europe-funded CCAM projects, this paper studies the current state of Connected, Cooperative, and Automated Mobility (CCAM) and identifies significant research gaps in taxonomy, cybersecurity, Artificial Intelligence (AI) and 6G research, that hinder the advancement of a future-ready CCAM infrastructure. The research emphasizes the crucial role of infrastructure in achieving autonomous mobility, shifting focus from the current vehicle-centric approach. It critiques the SAE J3016 taxonomy for its lack of emphasis on infrastructure and proposes an updated framework with an automation level dedicated to infrastructure automation. The paper highlights the existential threats posed by Quantum Computers (QC) and AI, stressing the need for quantum-safe cybersecurity measures and an ethical, controllable AI framework proposing a decentralized Collective Artificial Super Intelligence (CASI) framework. Identifying the critical need for a cooperative approach involving Road and Transport Authorities (RTAs) to achieve 100% vehicle connectivity and robust digital infrastructure, the study outlines the European Commission’s Vision 2050 goals, aiming for zero fatalities, zero emissions, and sustainable mobility. The paper concludes by providing recommendations for future research directions to accelerate the development of a comprehensive, secure, and efficient CCAM ecosystem. 展开更多
关键词 CCAM Horizon Europe sae J3016 taxonomy Vision 2050 AI Quantum Computers
下载PDF
SAE1070钢在加热过程中氧化影响因素
8
作者 付强 伊智 李国军 《材料与冶金学报》 CAS 北大核心 2024年第4期374-378,共5页
SAE1070钢在加热过程中的氧化对其产品质量及加热炉能耗存在较大的影响.结合前人实验结果,提出了SAE1070钢坯氧化层厚度的计算公式,该公式考虑了加热温度、加热时间和氧气体积分数等炉内参数对SAE1070钢坯氧化的影响,还分析了SAE1070钢... SAE1070钢在加热过程中的氧化对其产品质量及加热炉能耗存在较大的影响.结合前人实验结果,提出了SAE1070钢坯氧化层厚度的计算公式,该公式考虑了加热温度、加热时间和氧气体积分数等炉内参数对SAE1070钢坯氧化的影响,还分析了SAE1070钢氧化层的厚度随加热温度、加热时间及氧气体积分数的变化.结果表明:当炉内烟气中氧气体积分数为3%时,SAE1070钢坯形成的氧化层厚度是炉内烟气中氧气体积分数为1%时的1.3倍.设计及实际控制加热炉时,可根据上述研究结果优化其结构及加热过程的控制策略. 展开更多
关键词 sae1070钢 氧化层 加热炉
下载PDF
淬回火与等温淬火对SAE6150钢组织和力学性能的影响
9
作者 王丙旭 张宇 +1 位作者 崔威威 胡子瑞 《热加工工艺》 北大核心 2024年第8期19-22,共4页
对SAE6150钢进行淬回火和等温淬火热处理试验,分析了不同回火温度和等温温度对其组织和性能的影响。结果表明,SAE6150钢的回火组织主要由回火马氏体和残余奥氏体组成。随回火温度的升高,回火马氏体板条状形态逐渐消失,渗碳体和合金碳化... 对SAE6150钢进行淬回火和等温淬火热处理试验,分析了不同回火温度和等温温度对其组织和性能的影响。结果表明,SAE6150钢的回火组织主要由回火马氏体和残余奥氏体组成。随回火温度的升高,回火马氏体板条状形态逐渐消失,渗碳体和合金碳化物尺寸增大,数量增多。经等温淬火后,组织以贝氏体为主,随等温温度的升高,铁素体形态由细针状变为羽毛状。力学性能方面,随回火温度的升高,SAE6150钢的硬度、屈服强度和抗拉强度减小,断面收缩率和伸长率增大。对比等温淬火和回火SAE6150钢的力学性能后发现,在断面收缩率和伸长率相近的情况下,低温等温淬火试样表现出更高的硬度和强度。 展开更多
关键词 sae6150钢 淬回火 等温淬火 微观组织 力学性能
原文传递
热处理对差速器齿轮用SAE4320H钢组织及性能的影响
10
作者 崔政 孟祥英 +1 位作者 王瑞 毛威昂 《特钢技术》 CAS 2024年第2期54-57,共4页
SAE4320H往往用于耐冲击耐磨损的高端制造业零件,热轧状态或退火状态进行锻造,其热处理相关的研究较少。为探究不同热处理下组织转变和力学性能的变化,将一炼钢通过BOF-LF-VD-CC工艺生产的差速器齿轮用SAE4320H钢采用水淬、油淬、空冷... SAE4320H往往用于耐冲击耐磨损的高端制造业零件,热轧状态或退火状态进行锻造,其热处理相关的研究较少。为探究不同热处理下组织转变和力学性能的变化,将一炼钢通过BOF-LF-VD-CC工艺生产的差速器齿轮用SAE4320H钢采用水淬、油淬、空冷和炉冷的热处理工艺进行冷却并测定力学性能。试验结果表明:淬火对齿轮用SAE4320H钢的屈服强度和抗拉强度有着明显的提升,其中水淬的屈服强度和抗拉强度最高,但塑性最差。925℃正火-880℃淬火-180℃回火后,水淬得到回火马氏体组织,油淬得到回火马氏体+回火贝氏体+少量铁素体组织,空冷得到P+B+F组织,炉冷得到P+F组织。 展开更多
关键词 sae4320H 齿轮钢 合金 热处理 力学性能
下载PDF
基于SAE J1772协议的车载取电模块设计
11
作者 吕宏图 李公举 《集成电路应用》 2024年第1期410-411,共2页
阐述一款包含控制与通信的车载取电模块设计,该模块集成电源、采集、驱动及通信的硬件电路,采用AC7811QBFE单片机控制,符合SAE J1772标准,可通过蓝牙实时监控数据。
关键词 车载取电模块 CAN MODBUS sae J1772 蓝牙
下载PDF
齿轮钢SAE5120H微观组织结构的相关研究
12
作者 倪磊 钱焕 《特钢技术》 CAS 2024年第3期20-25,共6页
通过热模拟试验机、高温显微镜、扫描电镜和透射电镜等研究了SAE5120H钢的静态CCT曲线,奥氏体晶粒长大行为和析出相的表征。结果表明,该钢在冷却速度小于1℃/s时室温组织主要为铁素珠和珠光体,随着冷速增加,铁素珠和珠光体逐渐消失,产... 通过热模拟试验机、高温显微镜、扫描电镜和透射电镜等研究了SAE5120H钢的静态CCT曲线,奥氏体晶粒长大行为和析出相的表征。结果表明,该钢在冷却速度小于1℃/s时室温组织主要为铁素珠和珠光体,随着冷速增加,铁素珠和珠光体逐渐消失,产生贝氏体和马氏体,直至全部转变为马氏体;该钢伪渗碳温度为960℃不产生混晶;不同原始组织状态下奥氏体晶粒长大速率不同,以铁素珠加珠光体组织最快;晶粒均匀试样的微观析出相尺寸更加细小且弥散分布。 展开更多
关键词 sae5120H CCT曲线 奥氏体晶粒度 AlN析出相
下载PDF
基于LSTM-SAE网络的隧道内机电设备智能监控系统设计
13
作者 姜浩成 沈文忱 《机电工程技术》 2024年第7期283-286,291,共5页
对隧道机电设备的监控和寿命预测方法进行研究,并与传统方法进行对比。使用LSTM-SAE网络进行设备寿命的预测,并开展智能监控工作,首先确定设备剩余寿命的特征因子,对噪声进行了平滑处理,并进行数据的归一化,然后基于LSTM进行设备的寿命... 对隧道机电设备的监控和寿命预测方法进行研究,并与传统方法进行对比。使用LSTM-SAE网络进行设备寿命的预测,并开展智能监控工作,首先确定设备剩余寿命的特征因子,对噪声进行了平滑处理,并进行数据的归一化,然后基于LSTM进行设备的寿命预测,针对LSTM的不足,引入SAE稀疏编码器进一步提升网络预测的精确性,建立LSTM-SAE网络进行预测。建立B/S结构的监控系统,使用以太网连接服务端和浏览器端,建立拥有状态监测模块、故障处理统计模块、寿命分析预测模块的控制系统。最后对电池寿命进行预测,BP神经网络预测、支持向量机预测、贝叶斯预测和线性回归预测进行对比,证明系统具有较高准确性,MAE、RMSE、SF值分别为8.68、9.23、39.12,具有较高准确性。研究实现了LSTM和SAE的融合,相比传统BP网络更加准确,能够满足隧道机电设备预测的特殊需求。 展开更多
关键词 LSTM-sae 隧道 机电设备 监控管理
下载PDF
高洁净度齿轮钢SAE8620H的冶炼
14
作者 赵展鹏 刘从德 +3 位作者 蒋栋初 左长城 朱平 林罗建 《河北冶金》 2024年第11期40-43,共4页
介绍了采用BOF-LF-RH-CCM工艺流程生产高结净齿轮钢SAE8620H(/%,0.18~0.22 C,0.20~0.30 Si,0.60~0.80 Mn,≤0.015 P,≤0.003 S,0.40~0.50 Cr,0.020~0.040 Al,Mo、Ni适量)的工艺过程。通过控制转炉终点[%C]0.06~0.10,[%P]≤0.013,出钢加1... 介绍了采用BOF-LF-RH-CCM工艺流程生产高结净齿轮钢SAE8620H(/%,0.18~0.22 C,0.20~0.30 Si,0.60~0.80 Mn,≤0.015 P,≤0.003 S,0.40~0.50 Cr,0.020~0.040 Al,Mo、Ni适量)的工艺过程。通过控制转炉终点[%C]0.06~0.10,[%P]≤0.013,出钢加1.0~1.3 kg/t Al脱氧以及合成精炼渣渣洗出钢,LF造高碱度(R=5.0~8.0)炉渣精炼(/%,52~56 CaO,6~10 SiO_(2),3~8 MgO,26~33 Al_(2)O_(3),≤0.8 FeO+MnO),RH高真空度(≤67 Pa)保持时间15 min以上,Ca处理,连铸过热度15~25℃,中间包碱性覆盖剂和预熔型颗粒保护渣保护浇注,M+F电磁搅拌等工艺措施,成品钢中[%P]≤0.015,[%S]≤0.003,[N]≤45×10^(-6),[H]≤1.3×10^(-6),T[O]≤12×10^(-6)、平均值7.6×10^(-6),轧材检验结果显示钢中各类非金属夹杂物≤1.0级,达到高洁净度齿轮钢质量要求,优于产品标准ASTM A304。 展开更多
关键词 齿轮钢 sae8620H 高洁净度 工序控制 全氧含量T[O] 冶炼
下载PDF
基于MF-SAE-SSA-KELM油浸式变压器故障诊断方法
15
作者 黄旭 许冬云 《工业控制计算机》 2024年第10期126-128,共3页
传统油浸式变压器溶解气体分析故障诊断方法存在故障诊断速度慢的问题,提出一种多尺度融合堆叠自编码器(Multiscale Fusion Stacked Auto-encoder,MF-SAE)的油浸式变压器故障诊断的方法。首先获取油浸式变压器高压套管红外检测图谱,后... 传统油浸式变压器溶解气体分析故障诊断方法存在故障诊断速度慢的问题,提出一种多尺度融合堆叠自编码器(Multiscale Fusion Stacked Auto-encoder,MF-SAE)的油浸式变压器故障诊断的方法。首先获取油浸式变压器高压套管红外检测图谱,后将该图谱裁剪并处理为灰度图,将这些灰度图展平为一维特征向量后输入SAE,通过设置不同隐含层个数获取自编码器的编码部分从数据中提取特征。这些特征累加便得到不同尺度隐含层特征。之后将这些特征输入麻雀算法优化的核极限学习机分类模型进行故障诊断。算例分析表明,所提故障诊断方法有较高的故障诊断准确率。 展开更多
关键词 油浸式变压器 MF-sae 麻雀算法 核极限学习机 故障诊断
下载PDF
基于数值模拟分析CBN刀具车削参数对SAE-5120钢残余应力的影响
16
作者 张雁 谢林涛 +1 位作者 李庆华 杨凤双 《工具技术》 北大核心 2023年第2期81-85,共5页
零部件表面的残余应力对其屈服极限、疲劳寿命有很大影响,残余拉应力与压应力对零部件的疲劳影响也存在差异。本试验主要研究CBN刀具切削SAE-5120钢时的表面残余应力,利用有限元数值分析方法设计不同切削速度、进给量和背吃刀量等切削参... 零部件表面的残余应力对其屈服极限、疲劳寿命有很大影响,残余拉应力与压应力对零部件的疲劳影响也存在差异。本试验主要研究CBN刀具切削SAE-5120钢时的表面残余应力,利用有限元数值分析方法设计不同切削速度、进给量和背吃刀量等切削参数,分析CBN刀具切削SAE-5120钢的表层应力状态以及切削用量对残余应力的影响,优化产生最小残余应力的切削参数,并结合极差法分析切削速度、进给量和背吃刀量对残余应力影响的显著度。有限元结果表明:采用CBN刀具切削SAE-5120时,工件表层会产生残余拉应力;切削速度对残余应力的影响最显著,其次是进给量;切削速度为200m/min和进给量为0.2mm/r时,工件表层残余应力最小。 展开更多
关键词 CBN刀具 sae-5120钢 残余应力 切削速度 进给量 背吃刀量 极差法
下载PDF
A multi-scale convolutional auto-encoder and its application in fault diagnosis of rolling bearings 被引量:10
17
作者 Ding Yunhao Jia Minping 《Journal of Southeast University(English Edition)》 EI CAS 2019年第4期417-423,共7页
Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on ... Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data. 展开更多
关键词 fault diagnosis deep learning convolutional auto-encoder multi-scale convolutional kernel feature extraction
下载PDF
Fault Diagnosis of Motor in Frequency Domain Signal by Stacked De-noising Auto-encoder 被引量:4
18
作者 Xiaoping Zhao Jiaxin Wu +2 位作者 Yonghong Zhang Yunqing Shi Lihua Wang 《Computers, Materials & Continua》 SCIE EI 2018年第11期223-242,共20页
With the rapid development of mechanical equipment,mechanical health monitoring field has entered the era of big data.Deep learning has made a great achievement in the processing of large data of image and speech due ... With the rapid development of mechanical equipment,mechanical health monitoring field has entered the era of big data.Deep learning has made a great achievement in the processing of large data of image and speech due to the powerful modeling capabilities,this also brings influence to the mechanical fault diagnosis field.Therefore,according to the characteristics of motor vibration signals(nonstationary and difficult to deal with)and mechanical‘big data’,combined with deep learning,a motor fault diagnosis method based on stacked de-noising auto-encoder is proposed.The frequency domain signals obtained by the Fourier transform are used as input to the network.This method can extract features adaptively and unsupervised,and get rid of the dependence of traditional machine learning methods on human extraction features.A supervised fine tuning of the model is then carried out by backpropagation.The Asynchronous motor in Drivetrain Dynamics Simulator system was taken as the research object,the effectiveness of the proposed method was verified by a large number of data,and research on visualization of network output,the results shown that the SDAE method is more efficient and more intelligent. 展开更多
关键词 Big data deep learning stacked de-noising auto-encoder fourier transform
下载PDF
Outlier Detection for Water Supply Data Based on Joint Auto-Encoder 被引量:2
19
作者 Shu Fang Lei Huang +2 位作者 Yi Wan Weize Sun Jingxin Xu 《Computers, Materials & Continua》 SCIE EI 2020年第7期541-555,共15页
With the development of science and technology,the status of the water environment has received more and more attention.In this paper,we propose a deep learning model,named a Joint Auto-Encoder network,to solve the pr... With the development of science and technology,the status of the water environment has received more and more attention.In this paper,we propose a deep learning model,named a Joint Auto-Encoder network,to solve the problem of outlier detection in water supply data.The Joint Auto-Encoder network first expands the size of training data and extracts the useful features from the input data,and then reconstructs the input data effectively into an output.The outliers are detected based on the network’s reconstruction errors,with a larger reconstruction error indicating a higher rate to be an outlier.For water supply data,there are mainly two types of outliers:outliers with large values and those with values closed to zero.We set two separate thresholds,and,for the reconstruction errors to detect the two types of outliers respectively.The data samples with reconstruction errors exceeding the thresholds are voted to be outliers.The two thresholds can be calculated by the classification confusion matrix and the receiver operating characteristic(ROC)curve.We have also performed comparisons between the Joint Auto-Encoder and the vanilla Auto-Encoder in this paper on both the synthesis data set and the MNIST data set.As a result,our model has proved to outperform the vanilla Auto-Encoder and some other outlier detection approaches with the recall rate of 98.94 percent in water supply data. 展开更多
关键词 Water supply data outlier detection auto-encoder deep learning
下载PDF
基于SAE模型和Play算子的矢量磁滞模型研究
20
作者 马阳阳 李永建 +2 位作者 孙鹤 杨明 岳帅超 《电工电能新技术》 CSCD 北大核心 2023年第6期44-53,共10页
构建精确的矢量磁滞模型对电工装备电磁场数值分析是必要的。本文基于深度堆叠自编码器(SAE)模型结合磁滞算子空间理论提出了一种矢量磁滞模型。在模型结构中利用多个Play磁滞算子构建算子空间,样本中的磁场强度数据输入算子空间生成高... 构建精确的矢量磁滞模型对电工装备电磁场数值分析是必要的。本文基于深度堆叠自编码器(SAE)模型结合磁滞算子空间理论提出了一种矢量磁滞模型。在模型结构中利用多个Play磁滞算子构建算子空间,样本中的磁场强度数据输入算子空间生成高维磁化状态矢量数据。该数据作为SAE模型的输入,利用SAE模型表征磁化状态矢量数据与模型输出磁感应强度的复杂非线性关系。通过训练样本生成的数据构建训练集和训练模型,获得SAE模型的参数。对测试数据的拟合结果表明:构建的模型可以有效地描述铁磁材料在旋转磁化情况下的非线性特性和各向异性。同时,对模型施加螺旋励磁,输出表明构建的模型可以有效地体现材料的矢量磁化特性。 展开更多
关键词 磁滞模型 sae模型 矢量Play算子 磁滞算子空间理论
下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部