Healthcare systems nowadays depend on IoT sensors for sending data over the internet as a common practice.Encryption ofmedical images is very important to secure patient information.Encrypting these images consumes a ...Healthcare systems nowadays depend on IoT sensors for sending data over the internet as a common practice.Encryption ofmedical images is very important to secure patient information.Encrypting these images consumes a lot of time onedge computing;therefore,theuse of anauto-encoder for compressionbefore encodingwill solve such a problem.In this paper,we use an auto-encoder to compress amedical image before encryption,and an encryption output(vector)is sent out over the network.On the other hand,a decoder was used to reproduce the original image back after the vector was received and decrypted.Two convolutional neural networks were conducted to evaluate our proposed approach:The first one is the auto-encoder,which is utilized to compress and encrypt the images,and the other assesses the classification accuracy of the image after decryption and decoding.Different hyperparameters of the encoder were tested,followed by the classification of the image to verify that no critical information was lost,to test the encryption and encoding resolution.In this approach,sixteen hyperparameter permutations are utilized,but this research discusses three main cases in detail.The first case shows that the combination of Mean Square Logarithmic Error(MSLE),ADAgrad,two layers for the auto-encoder,and ReLU had the best auto-encoder results with a Mean Absolute Error(MAE)=0.221 after 50 epochs and 75%classification with the best result for the classification algorithm.The second case shows the reflection of auto-encoder results on the classification results which is a combination ofMean Square Error(MSE),RMSprop,three layers for the auto-encoder,and ReLU,which had the best classification accuracy of 65%,the auto-encoder gives MAE=0.31 after 50 epochs.The third case is the worst,which is the combination of the hinge,RMSprop,three layers for the auto-encoder,and ReLU,providing accuracy of 20%and MAE=0.485.展开更多
Intelligent diagnosis approaches with shallow architectural models play an essential role in healthcare.Deep Learning(DL)models with unsupervised learning concepts have been proposed because high-quality feature extra...Intelligent diagnosis approaches with shallow architectural models play an essential role in healthcare.Deep Learning(DL)models with unsupervised learning concepts have been proposed because high-quality feature extraction and adequate labelled details significantly influence shallow models.On the other hand,skin lesionbased segregation and disintegration procedures play an essential role in earlier skin cancer detection.However,artefacts,an unclear boundary,poor contrast,and different lesion sizes make detection difficult.To address the issues in skin lesion diagnosis,this study creates the UDLS-DDOA model,an intelligent Unsupervised Deep Learning-based Stacked Auto-encoder(UDLS)optimized by Dynamic Differential Annealed Optimization(DDOA).Pre-processing,segregation,feature removal or separation,and disintegration are part of the proposed skin lesion diagnosis model.Pre-processing of skin lesion images occurs at the initial level for noise removal in the image using the Top hat filter and painting methodology.Following that,a Fuzzy C-Means(FCM)segregation procedure is performed using a Quasi-Oppositional Elephant Herd Optimization(QOEHO)algorithm.Besides,a novel feature extraction technique using the UDLS technique is applied where the parameter tuning takes place using DDOA.In the end,the disintegration procedure would be accomplished using a SoftMax(SM)classifier.The UDLS-DDOA model is tested against the International Skin Imaging Collaboration(ISIC)dataset,and the experimental results are examined using various computational attributes.The simulation results demonstrated that the UDLS-DDOA model outperformed the compared methods significantly.展开更多
To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features e...To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features extracted synchronously by the CCAE were stacked and fed to the multi-channel convolution layers for fusion. Then, the fused data was passed to all connection layers for compression and fed to the Softmax module for classification. Finally, the coupling loss function coefficients and the network parameters were optimized through an adaptive approach using the gray wolf optimization (GWO) algorithm. Experimental comparisons showed that the proposed ADCCAE fusion model was superior to existing models for multi-mode data fusion.展开更多
Based on a review of 28 Horizon Europe-funded CCAM projects, this paper studies the current state of Connected, Cooperative, and Automated Mobility (CCAM) and identifies significant research gaps in taxonomy, cybersec...Based on a review of 28 Horizon Europe-funded CCAM projects, this paper studies the current state of Connected, Cooperative, and Automated Mobility (CCAM) and identifies significant research gaps in taxonomy, cybersecurity, Artificial Intelligence (AI) and 6G research, that hinder the advancement of a future-ready CCAM infrastructure. The research emphasizes the crucial role of infrastructure in achieving autonomous mobility, shifting focus from the current vehicle-centric approach. It critiques the SAE J3016 taxonomy for its lack of emphasis on infrastructure and proposes an updated framework with an automation level dedicated to infrastructure automation. The paper highlights the existential threats posed by Quantum Computers (QC) and AI, stressing the need for quantum-safe cybersecurity measures and an ethical, controllable AI framework proposing a decentralized Collective Artificial Super Intelligence (CASI) framework. Identifying the critical need for a cooperative approach involving Road and Transport Authorities (RTAs) to achieve 100% vehicle connectivity and robust digital infrastructure, the study outlines the European Commission’s Vision 2050 goals, aiming for zero fatalities, zero emissions, and sustainable mobility. The paper concludes by providing recommendations for future research directions to accelerate the development of a comprehensive, secure, and efficient CCAM ecosystem.展开更多
Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on ...Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data.展开更多
With the rapid development of mechanical equipment,mechanical health monitoring field has entered the era of big data.Deep learning has made a great achievement in the processing of large data of image and speech due ...With the rapid development of mechanical equipment,mechanical health monitoring field has entered the era of big data.Deep learning has made a great achievement in the processing of large data of image and speech due to the powerful modeling capabilities,this also brings influence to the mechanical fault diagnosis field.Therefore,according to the characteristics of motor vibration signals(nonstationary and difficult to deal with)and mechanical‘big data’,combined with deep learning,a motor fault diagnosis method based on stacked de-noising auto-encoder is proposed.The frequency domain signals obtained by the Fourier transform are used as input to the network.This method can extract features adaptively and unsupervised,and get rid of the dependence of traditional machine learning methods on human extraction features.A supervised fine tuning of the model is then carried out by backpropagation.The Asynchronous motor in Drivetrain Dynamics Simulator system was taken as the research object,the effectiveness of the proposed method was verified by a large number of data,and research on visualization of network output,the results shown that the SDAE method is more efficient and more intelligent.展开更多
With the development of science and technology,the status of the water environment has received more and more attention.In this paper,we propose a deep learning model,named a Joint Auto-Encoder network,to solve the pr...With the development of science and technology,the status of the water environment has received more and more attention.In this paper,we propose a deep learning model,named a Joint Auto-Encoder network,to solve the problem of outlier detection in water supply data.The Joint Auto-Encoder network first expands the size of training data and extracts the useful features from the input data,and then reconstructs the input data effectively into an output.The outliers are detected based on the network’s reconstruction errors,with a larger reconstruction error indicating a higher rate to be an outlier.For water supply data,there are mainly two types of outliers:outliers with large values and those with values closed to zero.We set two separate thresholds,and,for the reconstruction errors to detect the two types of outliers respectively.The data samples with reconstruction errors exceeding the thresholds are voted to be outliers.The two thresholds can be calculated by the classification confusion matrix and the receiver operating characteristic(ROC)curve.We have also performed comparisons between the Joint Auto-Encoder and the vanilla Auto-Encoder in this paper on both the synthesis data set and the MNIST data set.As a result,our model has proved to outperform the vanilla Auto-Encoder and some other outlier detection approaches with the recall rate of 98.94 percent in water supply data.展开更多
基金funding was provided by the Institute for Research and Consulting Studies at King Khalid University through Corona Research(Fast Track)[Grant No.3-103S-2020].
文摘Healthcare systems nowadays depend on IoT sensors for sending data over the internet as a common practice.Encryption ofmedical images is very important to secure patient information.Encrypting these images consumes a lot of time onedge computing;therefore,theuse of anauto-encoder for compressionbefore encodingwill solve such a problem.In this paper,we use an auto-encoder to compress amedical image before encryption,and an encryption output(vector)is sent out over the network.On the other hand,a decoder was used to reproduce the original image back after the vector was received and decrypted.Two convolutional neural networks were conducted to evaluate our proposed approach:The first one is the auto-encoder,which is utilized to compress and encrypt the images,and the other assesses the classification accuracy of the image after decryption and decoding.Different hyperparameters of the encoder were tested,followed by the classification of the image to verify that no critical information was lost,to test the encryption and encoding resolution.In this approach,sixteen hyperparameter permutations are utilized,but this research discusses three main cases in detail.The first case shows that the combination of Mean Square Logarithmic Error(MSLE),ADAgrad,two layers for the auto-encoder,and ReLU had the best auto-encoder results with a Mean Absolute Error(MAE)=0.221 after 50 epochs and 75%classification with the best result for the classification algorithm.The second case shows the reflection of auto-encoder results on the classification results which is a combination ofMean Square Error(MSE),RMSprop,three layers for the auto-encoder,and ReLU,which had the best classification accuracy of 65%,the auto-encoder gives MAE=0.31 after 50 epochs.The third case is the worst,which is the combination of the hinge,RMSprop,three layers for the auto-encoder,and ReLU,providing accuracy of 20%and MAE=0.485.
基金deputyship for Research&Innovation,Ministry of Education in Saudi Arabia,for funding this research work through Project Number (IFP-2020-133).
文摘Intelligent diagnosis approaches with shallow architectural models play an essential role in healthcare.Deep Learning(DL)models with unsupervised learning concepts have been proposed because high-quality feature extraction and adequate labelled details significantly influence shallow models.On the other hand,skin lesionbased segregation and disintegration procedures play an essential role in earlier skin cancer detection.However,artefacts,an unclear boundary,poor contrast,and different lesion sizes make detection difficult.To address the issues in skin lesion diagnosis,this study creates the UDLS-DDOA model,an intelligent Unsupervised Deep Learning-based Stacked Auto-encoder(UDLS)optimized by Dynamic Differential Annealed Optimization(DDOA).Pre-processing,segregation,feature removal or separation,and disintegration are part of the proposed skin lesion diagnosis model.Pre-processing of skin lesion images occurs at the initial level for noise removal in the image using the Top hat filter and painting methodology.Following that,a Fuzzy C-Means(FCM)segregation procedure is performed using a Quasi-Oppositional Elephant Herd Optimization(QOEHO)algorithm.Besides,a novel feature extraction technique using the UDLS technique is applied where the parameter tuning takes place using DDOA.In the end,the disintegration procedure would be accomplished using a SoftMax(SM)classifier.The UDLS-DDOA model is tested against the International Skin Imaging Collaboration(ISIC)dataset,and the experimental results are examined using various computational attributes.The simulation results demonstrated that the UDLS-DDOA model outperformed the compared methods significantly.
文摘To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features extracted synchronously by the CCAE were stacked and fed to the multi-channel convolution layers for fusion. Then, the fused data was passed to all connection layers for compression and fed to the Softmax module for classification. Finally, the coupling loss function coefficients and the network parameters were optimized through an adaptive approach using the gray wolf optimization (GWO) algorithm. Experimental comparisons showed that the proposed ADCCAE fusion model was superior to existing models for multi-mode data fusion.
文摘Based on a review of 28 Horizon Europe-funded CCAM projects, this paper studies the current state of Connected, Cooperative, and Automated Mobility (CCAM) and identifies significant research gaps in taxonomy, cybersecurity, Artificial Intelligence (AI) and 6G research, that hinder the advancement of a future-ready CCAM infrastructure. The research emphasizes the crucial role of infrastructure in achieving autonomous mobility, shifting focus from the current vehicle-centric approach. It critiques the SAE J3016 taxonomy for its lack of emphasis on infrastructure and proposes an updated framework with an automation level dedicated to infrastructure automation. The paper highlights the existential threats posed by Quantum Computers (QC) and AI, stressing the need for quantum-safe cybersecurity measures and an ethical, controllable AI framework proposing a decentralized Collective Artificial Super Intelligence (CASI) framework. Identifying the critical need for a cooperative approach involving Road and Transport Authorities (RTAs) to achieve 100% vehicle connectivity and robust digital infrastructure, the study outlines the European Commission’s Vision 2050 goals, aiming for zero fatalities, zero emissions, and sustainable mobility. The paper concludes by providing recommendations for future research directions to accelerate the development of a comprehensive, secure, and efficient CCAM ecosystem.
基金The National Natural Science Foundation of China(No.51675098)
文摘Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data.
基金This research is supported financially by Natural Science Foundation of China(Grant No.51505234,51405241,51575283).
文摘With the rapid development of mechanical equipment,mechanical health monitoring field has entered the era of big data.Deep learning has made a great achievement in the processing of large data of image and speech due to the powerful modeling capabilities,this also brings influence to the mechanical fault diagnosis field.Therefore,according to the characteristics of motor vibration signals(nonstationary and difficult to deal with)and mechanical‘big data’,combined with deep learning,a motor fault diagnosis method based on stacked de-noising auto-encoder is proposed.The frequency domain signals obtained by the Fourier transform are used as input to the network.This method can extract features adaptively and unsupervised,and get rid of the dependence of traditional machine learning methods on human extraction features.A supervised fine tuning of the model is then carried out by backpropagation.The Asynchronous motor in Drivetrain Dynamics Simulator system was taken as the research object,the effectiveness of the proposed method was verified by a large number of data,and research on visualization of network output,the results shown that the SDAE method is more efficient and more intelligent.
基金The work described in this paper was supported by the National Natural Science Foundation of China(NSFC)under Grant No.U1501253 and Grant No.U1713217.
文摘With the development of science and technology,the status of the water environment has received more and more attention.In this paper,we propose a deep learning model,named a Joint Auto-Encoder network,to solve the problem of outlier detection in water supply data.The Joint Auto-Encoder network first expands the size of training data and extracts the useful features from the input data,and then reconstructs the input data effectively into an output.The outliers are detected based on the network’s reconstruction errors,with a larger reconstruction error indicating a higher rate to be an outlier.For water supply data,there are mainly two types of outliers:outliers with large values and those with values closed to zero.We set two separate thresholds,and,for the reconstruction errors to detect the two types of outliers respectively.The data samples with reconstruction errors exceeding the thresholds are voted to be outliers.The two thresholds can be calculated by the classification confusion matrix and the receiver operating characteristic(ROC)curve.We have also performed comparisons between the Joint Auto-Encoder and the vanilla Auto-Encoder in this paper on both the synthesis data set and the MNIST data set.As a result,our model has proved to outperform the vanilla Auto-Encoder and some other outlier detection approaches with the recall rate of 98.94 percent in water supply data.