A novel radar-based system for longwall coal mine machine localisation is described. The system, based on a radar-ranging sensor and designed to localise mining equipment with respect to the mine tunnel gate road infr...A novel radar-based system for longwall coal mine machine localisation is described. The system, based on a radar-ranging sensor and designed to localise mining equipment with respect to the mine tunnel gate road infrastructure, is developed and trialled in an underground coal mine. The challenges of reliable sensing in the mine environment are considered, and the use of a radar sensor for localisation is justified. The difficulties of achieving reliable positioning using only the radar sensor are examined. Several probabilistic data processing techniques are explored in order to estimate two key localisation parameters from a single radar signal, namely along-track position and across-track position, with respect to the gate road structures. For the case of across-track position, a conventional Kalman filter approach is sufficient to achieve a reliable estimate. However for along-track position estimation, specific infrastructure elements on the gate road rib-wall must be identified by a tracking algorithm. Due to complexities associated with this data processing problem, a novel visual analytics approach was explored in a 3D interactive display to facilitate identification of significant features for use in a classifier algorithm. Based on the classifier output, identified elements are used as location waypoints to provide a robust and accurate mining equipment localisation estimate.展开更多
This article introduces a novel approach for tricone bit wear condition monitoring and failure prediction for surface mining applications.A successful bit health monitoring system is essential to achieve fully autonom...This article introduces a novel approach for tricone bit wear condition monitoring and failure prediction for surface mining applications.A successful bit health monitoring system is essential to achieve fully autonomous blasthole drilling.In this research in-situ vibration signals were analyzed in timefrequency domain and signals trend during tricone bit life span were investigated and introduced to support the development of artificial intelligence(AI)models.In addition to the signal statistical features,wavelet packet energy distribution proved to be a powerful indicator for bit wear assessment.Backpropagation artificial neural network(ANN)models were designed,trained and evaluated for bit state classification.Finally,an ANN architecture and feature vector were introduced to classify the bit condition and predict the bit failure.展开更多
This paper highlights the role of automation technologies for improving the safety, productivity, and environmental sustainability of underground coal mining processes. This is accomplished by reviewing the impact tha...This paper highlights the role of automation technologies for improving the safety, productivity, and environmental sustainability of underground coal mining processes. This is accomplished by reviewing the impact that the introduction of automation technology has made through the longwall shearer automation research program of Longwall Automation Steering Committee(LASC). This result has been achieved through close integration of sensing, processing, and control technologies into the longwall mining process. Key to the success of the automation solution has been the development of new sensing methods to accurately measure the location of longwall equipment and the spatial configuration of coal seam geology. The relevance of system interoperability and open communications standards for facilitating effective automation is also discussed. Importantly, the insights gained through the longwall automation development process are now leading to new technology transfer activity to benefit other underground mining processes.展开更多
The ongoing need to deliver improved safety, productivity and environmental benefit in coal mining presents an open challenge as well as a powerful incentive to develop new and improved solutions. This paper assesses ...The ongoing need to deliver improved safety, productivity and environmental benefit in coal mining presents an open challenge as well as a powerful incentive to develop new and improved solutions. This paper assesses the critical role that enabling technologies have played in the delivery of remote and automated capability for longwall mining. A brief historical account is given to highlight key technical contributions which have influenced the direction and development of present-day longwall technology. The current state of longwall automation is discussed with particular attention drawn to the technologies that enable automated capability. Outcomes are presented from an independently conducted case study that assessed the impact that CSIRO's LASC longwall automation research has made to the longwall mining industry in Australia. Importantly, this study reveals how uptake of this innova- tive technology has significantly benefitted coal mine productivity, improved working conditions for personnel and enhanced environmental outcomes. These benefits have been widely adopted with CSIRO automation technology being used in 60 per cent of all Australian underground operations. International deployment of the technology is also emerging. The paper concludes with future challenges and opportunities to highfight the ongoing scope for longwall automation research and development.展开更多
Mineral consumption is increasing rapidly as more consumers enter the market for minerals and as the global standard of living increases. As a result, underground mining continues to progress to deeper levels in order...Mineral consumption is increasing rapidly as more consumers enter the market for minerals and as the global standard of living increases. As a result, underground mining continues to progress to deeper levels in order to tackle the mineral supply crisis in the 21 st century. However, deep mining occurs in a very technical and challenging environment, in which significant innovative solutions and best practice are required and additional safety standards must be implemented in order to overcome the challenges and reap huge eco- nomic gains. These challenges include the catastrophic events that are often met in deep mining engineering: rockbursts, gas outbursts, high in situ and redistributed stresses, large deformation, squeezing and creeping rocks, and high temperature. This review paper presents the current global status of deep mining and high-lights some of the newest technological achievements and opportunities associated with rock mechanics and geotechnical engineering in deep mining. Of the various technical achievements, unmanned workingfaces and unmanned mines based on fully automated mining and mineral extraction processes have become important fields in the 21 st century.展开更多
In the last five years, China has seen the technological development of intelligent mining and the application of the longwall automation technology developed by the Longwall Automation Steering Committee. This paper ...In the last five years, China has seen the technological development of intelligent mining and the application of the longwall automation technology developed by the Longwall Automation Steering Committee. This paper summarizes this great achievement, which occurred during the 12th Five-Year Plan (2011-2015), and which included the development of a set of intelligent equipment for hydraulic-powered supports, information transfers, dynamic decision-making, performance coordination, and the achievement of a high level of reliability despite difficult conditions. Within China, the intelligent system of a set of hydraulic-powered supports was completed, with our own intellectual property rights. An intelligent mining model was developed that permitted unmanned operation and single-person inspection on the work face. With these technologies, the number of miners on the work face can now be significantly reduced. Miners are only required to monitor mining machines on the roadway or at the surface control center, since intelligent mining can be applied to extract middle-thick or thick coal seams. As a result, miners' safety has been improved. Finally, this Darter discusses theprospects and challenges of intelligent mining over the next ten years.展开更多
文摘A novel radar-based system for longwall coal mine machine localisation is described. The system, based on a radar-ranging sensor and designed to localise mining equipment with respect to the mine tunnel gate road infrastructure, is developed and trialled in an underground coal mine. The challenges of reliable sensing in the mine environment are considered, and the use of a radar sensor for localisation is justified. The difficulties of achieving reliable positioning using only the radar sensor are examined. Several probabilistic data processing techniques are explored in order to estimate two key localisation parameters from a single radar signal, namely along-track position and across-track position, with respect to the gate road structures. For the case of across-track position, a conventional Kalman filter approach is sufficient to achieve a reliable estimate. However for along-track position estimation, specific infrastructure elements on the gate road rib-wall must be identified by a tracking algorithm. Due to complexities associated with this data processing problem, a novel visual analytics approach was explored in a 3D interactive display to facilitate identification of significant features for use in a classifier algorithm. Based on the classifier output, identified elements are used as location waypoints to provide a robust and accurate mining equipment localisation estimate.
基金The authors appreciate generous supports from Canada Natural Sciences and Engineering Research Council,McGill University Engine Centre as well as Faculty of Engineering.
文摘This article introduces a novel approach for tricone bit wear condition monitoring and failure prediction for surface mining applications.A successful bit health monitoring system is essential to achieve fully autonomous blasthole drilling.In this research in-situ vibration signals were analyzed in timefrequency domain and signals trend during tricone bit life span were investigated and introduced to support the development of artificial intelligence(AI)models.In addition to the signal statistical features,wavelet packet energy distribution proved to be a powerful indicator for bit wear assessment.Backpropagation artificial neural network(ANN)models were designed,trained and evaluated for bit state classification.Finally,an ANN architecture and feature vector were introduced to classify the bit condition and predict the bit failure.
文摘This paper highlights the role of automation technologies for improving the safety, productivity, and environmental sustainability of underground coal mining processes. This is accomplished by reviewing the impact that the introduction of automation technology has made through the longwall shearer automation research program of Longwall Automation Steering Committee(LASC). This result has been achieved through close integration of sensing, processing, and control technologies into the longwall mining process. Key to the success of the automation solution has been the development of new sensing methods to accurately measure the location of longwall equipment and the spatial configuration of coal seam geology. The relevance of system interoperability and open communications standards for facilitating effective automation is also discussed. Importantly, the insights gained through the longwall automation development process are now leading to new technology transfer activity to benefit other underground mining processes.
文摘The ongoing need to deliver improved safety, productivity and environmental benefit in coal mining presents an open challenge as well as a powerful incentive to develop new and improved solutions. This paper assesses the critical role that enabling technologies have played in the delivery of remote and automated capability for longwall mining. A brief historical account is given to highlight key technical contributions which have influenced the direction and development of present-day longwall technology. The current state of longwall automation is discussed with particular attention drawn to the technologies that enable automated capability. Outcomes are presented from an independently conducted case study that assessed the impact that CSIRO's LASC longwall automation research has made to the longwall mining industry in Australia. Importantly, this study reveals how uptake of this innova- tive technology has significantly benefitted coal mine productivity, improved working conditions for personnel and enhanced environmental outcomes. These benefits have been widely adopted with CSIRO automation technology being used in 60 per cent of all Australian underground operations. International deployment of the technology is also emerging. The paper concludes with future challenges and opportunities to highfight the ongoing scope for longwall automation research and development.
文摘Mineral consumption is increasing rapidly as more consumers enter the market for minerals and as the global standard of living increases. As a result, underground mining continues to progress to deeper levels in order to tackle the mineral supply crisis in the 21 st century. However, deep mining occurs in a very technical and challenging environment, in which significant innovative solutions and best practice are required and additional safety standards must be implemented in order to overcome the challenges and reap huge eco- nomic gains. These challenges include the catastrophic events that are often met in deep mining engineering: rockbursts, gas outbursts, high in situ and redistributed stresses, large deformation, squeezing and creeping rocks, and high temperature. This review paper presents the current global status of deep mining and high-lights some of the newest technological achievements and opportunities associated with rock mechanics and geotechnical engineering in deep mining. Of the various technical achievements, unmanned workingfaces and unmanned mines based on fully automated mining and mineral extraction processes have become important fields in the 21 st century.
文摘In the last five years, China has seen the technological development of intelligent mining and the application of the longwall automation technology developed by the Longwall Automation Steering Committee. This paper summarizes this great achievement, which occurred during the 12th Five-Year Plan (2011-2015), and which included the development of a set of intelligent equipment for hydraulic-powered supports, information transfers, dynamic decision-making, performance coordination, and the achievement of a high level of reliability despite difficult conditions. Within China, the intelligent system of a set of hydraulic-powered supports was completed, with our own intellectual property rights. An intelligent mining model was developed that permitted unmanned operation and single-person inspection on the work face. With these technologies, the number of miners on the work face can now be significantly reduced. Miners are only required to monitor mining machines on the roadway or at the surface control center, since intelligent mining can be applied to extract middle-thick or thick coal seams. As a result, miners' safety has been improved. Finally, this Darter discusses theprospects and challenges of intelligent mining over the next ten years.