期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Regional Evaluation of Winter Rapeseed Response to K Fertilization, K Use Efficiency, and Critical Level of Soil K in the Yangtze River Valley 被引量:2
1
作者 ZOU Juan LU Jian-wei LI Yin-shui LI Xiao-kun 《Agricultural Sciences in China》 CAS CSCD 2011年第6期911-920,共10页
The investigation was carried out to study the response of winter rapeseed to potassium (K) feritlization and the critical soil available K level for current winter rapeseed production in the Yangtze River Valley (... The investigation was carried out to study the response of winter rapeseed to potassium (K) feritlization and the critical soil available K level for current winter rapeseed production in the Yangtze River Valley (YRV) of China. A total of 132 field experiments were conducted in fields of farmers in the major winter rapeseed growing areas in YRV in 2000/2001 and 2004/2005 to 2006/2007 during growing season. Results of these field experiments showed that the average rapeseed yield increment resulting from 100 kg K ha-1 application was 358 kg ha-1, an increase over the control CK (no K) of 18.0% in 2005/2006 and 2006/2007. The average internal use efficiency (IE) of K was higher in the CK treatment (21.9 kg grain, kg-1 K uptake) than in the +K (100 kg K ha-1) treatment (17.7 kg grain, kg-1 K uptake). Winter rapeseed required 68.1 kg of K to produce 1 000 kg seed. The recovery efficiency of K fertilizer in rapeseed production averaged 39.3%. The K balance was negative, with an average net removal of 117.6 kg K ha-1 in the CK treatment annually, and 56.8 kg K ha-1 in the +K treatment. The results indicated that there was a significant negative relationship between yield increments by K application and soil available K content. Based on the relative yield of CK/+K at 90% level, the critical level of soil available K (NH4OAc-extractable K) was 135 mg kg-1. 展开更多
关键词 rapeseed (Brassica napus L.) k fertilizer k use efficiency yield critical level of soil available k
下载PDF
Potassium Fractions in Soils as Affected by Monocalcium Phosphate,Ammonium Sulfate,and Potassium Chloride Application 被引量:15
2
作者 WANG Huo-Yan, ZHOU Jian-Min, DU Chang-Wen and CHEN Xiao-Qin State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China) 《Pedosphere》 SCIE CAS CSCD 2010年第3期368-377,共10页
Soil potassium (K) deficiency has been increasing over recent decades as a result of higher inputs of N and P fertilizers concomitant with lower inputs of K fertilizers in China; however, the effects of interactions... Soil potassium (K) deficiency has been increasing over recent decades as a result of higher inputs of N and P fertilizers concomitant with lower inputs of K fertilizers in China; however, the effects of interactions between N, P, and K of fertilizers on K status in soils have not been thoroughly investigated for optimizing N, P, and K fertilizer use efficiency. The influence of ammonium sulfate (AS), monocMcium phosphate (MCP), and potassium chloride application on K fractions in three typical soils of China was evaluated during 90-d laboratory soil incubation. The presence of AS significantly altered the distribution of native and added K in soils, while addition of MCP did not significantly affected K equilibrium in most cases. Addition of AS significantly increased water-soluble K (WSK), decreased exchangeable K (EK) in almost all the soils except the paddy soil that contained considerable amounts of 2:1 type clay minerals with K added, retarded the formation of fixed K in the soils with K added, and suppressed the release of fixed K in the three soils without K added. These interactions might be expected to influence the K availability to plants when the soil was fertilized with AS. To improve K fertilizer use efficiency, whether combined application of AS and K was to be recommended or avoided should depend on K status of the soil, soil properties, and cropping systems. 展开更多
关键词 fertilizers k availability k fixation k release
下载PDF
Influences of Long-Term Fertilizer and Tillage Management on Soil Fertility of the North China Plain 被引量:44
3
作者 NIU Ling-An HAO Jin-Min ZHANG Bao-Zhong NIU Xin-Sheng 《Pedosphere》 SCIE CAS CSCD 2011年第6期813-820,共8页
In the North China Plain, fertilizer management and tillage practices have been changing rapidly during the last three decades; however, the influences of long-term fertilizer applications and tillage systems on ferti... In the North China Plain, fertilizer management and tillage practices have been changing rapidly during the last three decades; however, the influences of long-term fertilizer applications and tillage systems on fertility of salt-affected soils have not been well understood under a winter wheat (Triticum aestivum L.)-maize (Zea mays L.) annual double cropping system. A field experiment was established in 1985 on a Cambosol at the Quzhou Experimental Station, China Agricultural University, to investigate the responses of soil fertility to fertilizer and tillage practices. The experiment was established as an orthogonal design with nine treatments of different tillage methods and/or fertilizer applications. In October 2001, composite soil samples were collected from the 0–20 and 20–40 cm layers and analyzed for soil fertility indices. The results showed that after 17 years of nitrogen (N) and phosphorous (P) fertilizer and straw applications, soil organic matter (SOM) in the top layer was increased significantly from 7.00 to 9.30–13.14 g kg-1 in the 0–20 cm layer and from 4.00 to 5.48–7.75 g kg-1 in the 20–40 cm layer. Soil total N (TN) was increased significantly from 0.37 and 0.22 to 0.79–1.11 and 0.61–0.73 g N kg-1 in the 0–20 and 20–40 cm layers, respectively, with N fertilizer application; however, there was no apparent effect of straw application on TN content. The amounts of soil total P (TP) and rapidly available P (RP) were increased significantly from 0.60 to 0.67–1.31 g kg-1 in the 0–20 cm layer and from 0.52 to 0.60–0.73 g kg-1 in the 20–40 cm layer with P fertilizer application, but were decreased with combined N and P fertilizer applications. The applications of N and P fertilizers significantly increased the crop yields, but decreased the rapidly available potassium (RK) in the soil. Straw return could only meet part of the crop potassium requirements. Our results also suggested that though some soil fertility parameters were maintained or enhanced under the long-term fertilizer and straw applications, careful soil quality monitoring was necessary as other nutrients could be depleted. Spreading straw on soil surface before tillage and leaving straw at soil surface without tillage were two advantageous practices to increase SOM accumulation in the surface layer. Plowing the soil broke aggregates and increased aeration of the soil, which led to enhanced organic matter mineralization. 展开更多
关键词 rapidly available k rapidly available P soil organic matter straw return total N
原文传递
Biotransformation of Earthworm Activity on Potassium-Bearing Mineral Powder 被引量:6
4
作者 朱晓玲 连宾 +2 位作者 杨雪 刘丛强 朱立军 《Journal of Earth Science》 SCIE CAS CSCD 2013年第1期65-74,共10页
This study analyzes the biotransformation of earthworms on K in potassium-bearing mineral powder (PBMP) under different PBMP recruitments. A mixture of PBMP (10% to 60% mass fraction) and decaying cow dung was use... This study analyzes the biotransformation of earthworms on K in potassium-bearing mineral powder (PBMP) under different PBMP recruitments. A mixture of PBMP (10% to 60% mass fraction) and decaying cow dung was used as feed for breeding the earthworms to study the potassium-releasing ability of earthworms on PBMP in soil. The mixture containing 20% and 30% PBMP resulted in good growth and propagation of the earthworms as well as higher conversion rates of potassium. Therefore, the optimum recruitments of mineral powder are 20% and 30%. The mixture of cow dung and PBMP was compared with the mixture of cow dung and corresponding proportions of quartz powder to analyze the conversion rate of earthworms on PBMP in different combinations. After the earthworms were raised with the mixture of cow dung and PBMP (8 : 2 and 7 : 3) for 30 d, the contents of rapidly available K and effective K were 10 824.3±35.9 and 11 688.4±16.1 mg.k-1 as well as 10 079.6±62.2 and 10 247.5±172.7 mg.kg-1, respectively. After the earthworms were raised with the mixture of cow dung and quartz powder (8 : 2 and 7 : 3) for 30 d, the contents of rapidly available K and effective K were 10 623.3±41.1 and 11 385.5±13.5 mg.kg-1 as well as 9 834.2±51.8 and 9 907.6±11.4 mg.kg-1, respectively. Thus, the contents of rapidly available K and effective K in the mixture of cow dung and PBMP were significantly higher compared with those in the mixture of cow dung and quartz powder (P〈0.05). The increment contents of rapidly available K and effective K were 201.0 and 302.9 mg.kg1 as well as 245.4 and 339.9 mg-kg1, respectively. Therefore, earthworms can activate and trans-form K into effective K through feeding, digestion, absorption, and excretion. The results pro- vided a new idea of using earthworms to release potassium in low-grade potassium-bearing rocks and obtain the rapidly available K and effective K needed by plants. 展开更多
关键词 EARTHWORM potassium-bearing mineral powder mineral k rapidly available k effective k activation.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部