期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Genome-wide identification and characterization of the bHLH gene family in an ornamental woody plant Prunus mume 被引量:5
1
作者 Yanyan Wu Sihui Wu +4 位作者 Xueqin Wang Tianyu Mao Manzhu Bao Junwei Zhang Jie Zhang 《Horticultural Plant Journal》 SCIE CAS CSCD 2022年第4期531-544,共14页
The basic helix-loop-helix(bHLH)transcription factor family is the second-largest family in plants,where it plays essential roles in development,and the responses to multiple abiotic and biotic stressors.However,littl... The basic helix-loop-helix(bHLH)transcription factor family is the second-largest family in plants,where it plays essential roles in development,and the responses to multiple abiotic and biotic stressors.However,little information is available about this gene family in Prunus mume,which is widely cultivated in East Asia as an ornamental fruit tree.Here,100 PmbHLH genes were identified,and their evolution and functions were explored in P.mume for the first time.The PmbHLH genes were classified into 21 subfamilies.The chromosomal distribution,physicochemical properties,bHLH domain,conserved motif,and intron/exon compositions were also analyzed.Furthermore,the evolutionary pattern,divergence time of the PmbHLH family,and genetic relationships among P.mume,Arabidopsis thaliana,and Prunus persica and Fragaria vesca of Rosaceae were explored.The functional prediction analysis of these PmbHLHs indicated that their functions varied,and included participating in the formation of organs and tissues,responding to stress,and the biosynthesis and metabolism of hormones and other secondary metabolites.Interestingly,expression analyses of PmbHLHs also revealed diverse expression patterns.Most of the PmbHLH genes were highly expressed in roots and stems,and a few were highly expressed in leaves,buds,and fruits,indicating tissue expression specificity.Eight PmbHLH genes,which were upregulated during low-temperature stress,may have critical roles in the response to cold stress.Ten PmbHLHs were differentially expressed between weeping and upright branches in a P.mume F_(1) population.These results shed light on the structure and evolution of the PmbHLH gene family,and lay a foundation for further functional studies of the bHLH genes. 展开更多
关键词 Prunus mume bhlh gene family Evolutionary analyses Functional prediction Expression pattern analyses
下载PDF
Genome-wide identification and expression analysis of NtbHLH gene family in tobacco(Nicotiana tabacum)and the role of NtbHLH86 in drought adaptation 被引量:2
2
作者 Ge Bai Da-Hai Yang +9 位作者 Peijian Chao Heng Yao MingLiang Fei Yihan Zhang Xuejun Chen Bingguang Xiao Feng Li Zhen-Yu Wang Jun Yang He Xie 《Plant Diversity》 SCIE CAS CSCD 2021年第6期510-522,共13页
The bHLH transcription factors play pivotal roles in plant growth and development,production of secondary metabolites and responses to various environmental stresses.Although the bHLH genes have been well studied in m... The bHLH transcription factors play pivotal roles in plant growth and development,production of secondary metabolites and responses to various environmental stresses.Although the bHLH genes have been well studied in model plant species,a comprehensive investigation of the bHLH genes is required for tobacco with newly obtained high-quality genome.In the present study,a total of 309 NtbHLH genes were identified and can be divided into 23 subfamilies.The conserved amino acids which are essential for their function were predicted for the NtbHLH proteins.Moreover,the NtbHLH genes were conserved during evolution through analyzing the gene structures and conserved motifs.A total of 265 NtbHLH genes were localized in the 24 tobacco chromosomes while the remained 44 NtbHLH genes were mapped to the scaffolds due to the complexity of tobacco genome.Moreover,transcripts of NtbHLH genes were obviously tissue-specific expressed from the gene-chip data from 23 tobacco tissues,and expressions of 20 random selected NtbHLH genes were further confirmed by quantitative real-time PCR,indicating their potential functions in the plant growth and development.Importantly,overexpressed NtbHLH86 gene confers improve drought tolerance in tobacco indicating that it might be involved in the regulation of drought stress.Therefore,our findings here provide a valuable information on the characterization of NtbHLH genes and further investigation of their functions in tobacco. 展开更多
关键词 bhlh gene family Development Genome-wide analysis Characterization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部