A dilatometer was used to study the kinetics of bainite-to-austenite transformation in low carbon microalloyed steel with the initial microstructure of bainite during the continuous reheating process. The bainite-to-a...A dilatometer was used to study the kinetics of bainite-to-austenite transformation in low carbon microalloyed steel with the initial microstructure of bainite during the continuous reheating process. The bainite-to-austenite trans- formation was observed to take place in two steps at low heating rate. The first step is the dissolution of bainite, and the second one is the remaining bainite-to-austenite transformation controlled by a dissolution process. The calculation result of the kinetics of austenite formation shows that the two steps occur by diffusion at low heating rate. However, at high heating rate the bainite-to-austenite transformation occurs in a single step, and the process is mainly dominated by shear. The growth rate of austenite reaches the maximum at about 835℃ at different heating rates and the growth rate of austenite as a function of temperature increases with the increase in heating rate.展开更多
The effects of cyclic stress loading on the microstructual evolution and tensile properties of a medium-carbon super- bainitic steel were investigated. Experimental results show that the cyclic stress can induce the c...The effects of cyclic stress loading on the microstructual evolution and tensile properties of a medium-carbon super- bainitic steel were investigated. Experimental results show that the cyclic stress can induce the carbon gathering in austenite and phase transformation from film-like retained austenite to twin martensite, which will obviously enhance the tensile strength and the product of tensile strength and ductility. The higher the bainitic transformation temperature, the lower the transformation rate of the retained austenite. The amount and thickness of the film-like retained austenite play an important role during the cyclic stress induced phase transformation.展开更多
TEM observation of carbide precipitates in bainite has been carried out for steel 40CMD8. Specimens transformed at 350 ℃ and 450 ℃ without external stress contain respectively the lower and the upper bainite. No fun...TEM observation of carbide precipitates in bainite has been carried out for steel 40CMD8. Specimens transformed at 350 ℃ and 450 ℃ without external stress contain respectively the lower and the upper bainite. No fundamental change in carbide precipitation is observed in specimen transformed at 350 ℃ under stress of 128 MPa. The very fine cementite is found precipitated within the upper bainite plates in specimen transformed at 450 ℃ under stress of 144 MPa, which can be explained as the result of the difficulty of carbon diffusing out of the massive ferrite plate within a much shortened transformation time due to the external stress. For all the specimens examined, Bagaryatskii orientation relationship is found existing between the carbides and ferrite matrix.展开更多
The Ginzbury-Landau theory for bainitic transformation was devised, which contains two first-order phase transformations, one being reconstructive represented by the diffusional proeutectoidal precipitation of ferrite...The Ginzbury-Landau theory for bainitic transformation was devised, which contains two first-order phase transformations, one being reconstructive represented by the diffusional proeutectoidal precipitation of ferrite, and the other the displacive transformation. It provides a coupled mechanism for the formation of bainite. With the numerical simulation results, a diffusion-induced nucleation and a diffusion-accompanied growth of displacive transformation were suggested. This theory can be helpful to over- throw the thermodynamic difficulty of displacive transformation above the Ms temperature, and also helpful to understand the Bs temperature, the partial supersaturation, the single variation of bainitic carbides, and the incomplete-reaction phenomenon of bainitic transformation, etc..展开更多
The slow phase transformation of microalloyed dual phase steel makes the nonuniform stress and temperature fields during the post rolling cooling process have a significant impact on the phase transformation process.G...The slow phase transformation of microalloyed dual phase steel makes the nonuniform stress and temperature fields during the post rolling cooling process have a significant impact on the phase transformation process.Given the relatively slow phase transformation of DP780 steel within the microalloyed dual phase steel series,the influence of stress on the phase transformation behavior of DP780 steel was investigated.To quantify the nonuniform thermal and stress conditions in the steel coil,a thermo-mechanical coupled finite element model of the hot-rolled strip cooling process was established.Based on the simulation data,DP780 steel was chosen as the research material,and Gleeble 3500 thermal simulation equipment was used for experimental validation.The thermal expansion curves were analyzed through regression to establish the dynamic model of DP780 steel phase transformation under stress.Subsequently,metallographic analysis was conducted to determine phase transformation type and grain size of DP780 steel.The results confirmed that the stress promotes the occurrence of semi-diffusion-type bainite transformation.Furthermore,an appropriate level of stress facilitates the growth of bainitic grains,while the increased stress inhibits the growth of ferritic grains.展开更多
The effects of deformation temperature and strain on bainite transformation of low carbon steel and boron- containing steel were investigated under continuous cooling conditions by means of dilatometric measurement an...The effects of deformation temperature and strain on bainite transformation of low carbon steel and boron- containing steel were investigated under continuous cooling conditions by means of dilatometric measurement and mi- crostructure observation. The results show that with decreasing the deformation temperature from 1000 to 800 ℃ and increasing strains, bainite start temperature for boron-containing low carbon steel increases, whereas it decreases for low carbon steel under the same condition. The bainite microstructures are easily obtained for boron-containing steel deformed at different temperatures and different strains compared with plain low carbon steel. With increasing the continuous cooling rate, the bainite start temperature under deformed condition is about 20 ℃ higher than that under undeformed condition for boron-containing steel, but it changes slightly when the cooling rate is 20 ℃/s or more.展开更多
The lath-or plate-shaped bainitic ferrite of low and medium carbon alloy steels consists of packets of ferrite sublaths which are composed of many finer and regular ferrite blocks.They are uniform shear growth units o...The lath-or plate-shaped bainitic ferrite of low and medium carbon alloy steels consists of packets of ferrite sublaths which are composed of many finer and regular ferrite blocks.They are uniform shear growth units of bainitic phase transformation.No carbide is precipitated from them.The bainitic O-carbides are precipitated from γ-α interface or carbon-rich austenite.The mode of arrangement of the units in ferrite sublath packet is in uni-or bi-di- rection.Single surface relief is produced by the accumulation of uniform shear strains with all the ferrite units arranged unidirectionally in a sublath packet,while tent-shaped surface relief is formed by the integration of the uniform shear strains of two groups with ferrite units piling up in two directions and growing face to face;whereas if they grow back to back,the integra- tion will be responsible for invert-tent-shaped surface relief.The interface trace between two groups of ferrite units in a sublath packet is shown as“midrib”.展开更多
Effects of solute rare earth(RE)on continuous cooling transformation of a low-alloy Cr–Mo–V bainitic steel are investigated in detail by dilatometry,optical microscopy(OM),scanning electron microscopy(SEM)and transm...Effects of solute rare earth(RE)on continuous cooling transformation of a low-alloy Cr–Mo–V bainitic steel are investigated in detail by dilatometry,optical microscopy(OM),scanning electron microscopy(SEM)and transmission electron microscopy(TEM).Microstructures appeared in thermal dilatometric samples of both low-alloy Cr–Mo–V(RE)steels are composed of quasi-polygonal ferrite(QPF),degenerate pearlite(DP),granular bainite(GB),lath bainite(LB),and martensite(M)depending on cooling rate.When cooling rate is lower than 2°C/s,the addition of RE suppresses QPF transformation,and thereby inducing a broader transformation region of GB.When cooling rate ranges from 2 to 100°C/s,the addition of RE decreases the start temperature of bainitic transformation distinctly,which results in finer bainitic ferrite grain size and higher dislocation density.The addition of RE can enhance the hardness of the low alloy Cr–Mo–V steel by affecting the aforementioned diffusional and/or partly displacive transformation.However,when cooling rate increases up to 150°C/s,two steels have the same hardness value of about 435 HV due to only martensite obtained by displacive transformation.展开更多
Due to the excellent comprehensive mechanical properties and toughness of bainite steels,bainite is regarded as a most desirable microstructure for the new generation of high-strength weathering steels.The formation o...Due to the excellent comprehensive mechanical properties and toughness of bainite steels,bainite is regarded as a most desirable microstructure for the new generation of high-strength weathering steels.The formation of bainite was observed in real time in a high-strength weathering steel,and the results showed that bainite laths show impingement during phase transformation.The preferred regions of nucleation sites were identified,and the growth rate of bainite was measured.The growth mechanism of bainite was demonstrated to exhibit growth rate contributions from both the diffusion mechanism and the shear mechanism.Subsequently,the heterogeneous phases that form preferred sites for bainite nucleation were quantitatively identified by scanning electron microscopy(SEM),energy-dispersive X-ray spectrometry(EDS),and calculation of phase diagram(CALPHAD).The austenite grain sizes in crease with increasing austenite temperature,which leads to longer bainite laths.The influence of a small lattice disregistry between the heterogeneous phases and bainite on the bainite nucleation was studied.The disregistries between the favorable heterogeneous phases of VN,VC,TiN,or TiC and the ot-Fe in bainite are 2.9,3.1,3.9,and 4.6%,respectively.Therefore,VN,VC,TiN,and TiC can act as highly effective nuclei for bainite during the bainite transformation.展开更多
The bainitic transformation of the steels with different mass fractions of N, ~0.002% and 0.021%, was observed in situ by using high-temperature metalloscope. Micrometer-and nanometer-sized aluminum nitride(AlN) parti...The bainitic transformation of the steels with different mass fractions of N, ~0.002% and 0.021%, was observed in situ by using high-temperature metalloscope. Micrometer-and nanometer-sized aluminum nitride(AlN) particles were found in the steel with 0.021% N.Grain boundaries, the interior of the grains, and Al N particles were used as initial nucleation sites of bainitic ferrite, and bainitic ferrite subunits served as new nucleation sites to induce secondary nucleation. The lengthening rate of bainitic ferrite varied at different nucleation sites, which was controlled by the repeated nucleation and growth of bainitic subunits. The Al N particles not only provided several nucleation sites, but also increased the autocatalytic effect on the transformation, further shortening the incubation period, promoting the bainitic transformation, and refining the bainitic microstructure.展开更多
Bainite transformation has yet to be utilized and even thoroughly studied in medium Mn steels.Here,we investigate the isothermal bainite transformation in a 10Mn steel at 450°C experimentally and theoretically,fo...Bainite transformation has yet to be utilized and even thoroughly studied in medium Mn steels.Here,we investigate the isothermal bainite transformation in a 10Mn steel at 450°C experimentally and theoretically,focusing on the effect of dislocations introduced by warm deformation.We show that the bainite transformation in the studied medium Mn steel exhibits extremely sluggish kinetics(on a time scale of days),concurrent with the pearlite formation.The introduced dislocations can significantly accelerate bainite transformation kinetics while also facilitating the pearlite reaction.This is likely the first report on the simultaneous occurrence of these two solid-state reactions in medium Mn steels.With respect to the roles of dislocations in the acceleration of bainite transformation observed in this work,we propose a new‘carbon depletion mechanism’,in which dislocations-stimulated pearlite formation makes a twofold contribution:facilitating the formation of bainitic ferrite sub-units to further enhance the autocatalytic effect and preventing the carbon enrichment in the remaining austenite.On this basis,a physical model is developed to quantitatively understand the bainite transformation kinetics considering the effect of concurrent pearlite formation,revealing good agreements between model descriptions and experiment results.Our findings,herein,offer fundamental insights into the bainite transformation in medium Mn steels and uncover a previously unidentified role played by introduced dislocations in influencing the kinetics of bainite formation,which may guide its future application in manipulating microstructure for the development of advanced high-strength steels.展开更多
文摘A dilatometer was used to study the kinetics of bainite-to-austenite transformation in low carbon microalloyed steel with the initial microstructure of bainite during the continuous reheating process. The bainite-to-austenite trans- formation was observed to take place in two steps at low heating rate. The first step is the dissolution of bainite, and the second one is the remaining bainite-to-austenite transformation controlled by a dissolution process. The calculation result of the kinetics of austenite formation shows that the two steps occur by diffusion at low heating rate. However, at high heating rate the bainite-to-austenite transformation occurs in a single step, and the process is mainly dominated by shear. The growth rate of austenite reaches the maximum at about 835℃ at different heating rates and the growth rate of austenite as a function of temperature increases with the increase in heating rate.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51171030 and 51604034)the Scientific and Technological Planning Project of Jilin Province,China(Grant No.20150520030JH)the Scientific and Technological Research Fund of Jilin Provincial Education Department during the Twelfth Five-year Plan Period,China(Grant No.2015-95)
文摘The effects of cyclic stress loading on the microstructual evolution and tensile properties of a medium-carbon super- bainitic steel were investigated. Experimental results show that the cyclic stress can induce the carbon gathering in austenite and phase transformation from film-like retained austenite to twin martensite, which will obviously enhance the tensile strength and the product of tensile strength and ductility. The higher the bainitic transformation temperature, the lower the transformation rate of the retained austenite. The amount and thickness of the film-like retained austenite play an important role during the cyclic stress induced phase transformation.
文摘TEM observation of carbide precipitates in bainite has been carried out for steel 40CMD8. Specimens transformed at 350 ℃ and 450 ℃ without external stress contain respectively the lower and the upper bainite. No fundamental change in carbide precipitation is observed in specimen transformed at 350 ℃ under stress of 128 MPa. The very fine cementite is found precipitated within the upper bainite plates in specimen transformed at 450 ℃ under stress of 144 MPa, which can be explained as the result of the difficulty of carbon diffusing out of the massive ferrite plate within a much shortened transformation time due to the external stress. For all the specimens examined, Bagaryatskii orientation relationship is found existing between the carbides and ferrite matrix.
基金the National Natural Science Foundation of China(Nos.51271035 and 51371032)for funding this workfinancial support from the National Natural Science Foundation of China(No.51204092)the Key Laboratory Fundamental Research Project of the Education Department of Liaoning Province,China(No.LZ2015046)
文摘The Ginzbury-Landau theory for bainitic transformation was devised, which contains two first-order phase transformations, one being reconstructive represented by the diffusional proeutectoidal precipitation of ferrite, and the other the displacive transformation. It provides a coupled mechanism for the formation of bainite. With the numerical simulation results, a diffusion-induced nucleation and a diffusion-accompanied growth of displacive transformation were suggested. This theory can be helpful to over- throw the thermodynamic difficulty of displacive transformation above the Ms temperature, and also helpful to understand the Bs temperature, the partial supersaturation, the single variation of bainitic carbides, and the incomplete-reaction phenomenon of bainitic transformation, etc..
基金supported by the National Natural Science Foundation of China(Grant No.52004029).
文摘The slow phase transformation of microalloyed dual phase steel makes the nonuniform stress and temperature fields during the post rolling cooling process have a significant impact on the phase transformation process.Given the relatively slow phase transformation of DP780 steel within the microalloyed dual phase steel series,the influence of stress on the phase transformation behavior of DP780 steel was investigated.To quantify the nonuniform thermal and stress conditions in the steel coil,a thermo-mechanical coupled finite element model of the hot-rolled strip cooling process was established.Based on the simulation data,DP780 steel was chosen as the research material,and Gleeble 3500 thermal simulation equipment was used for experimental validation.The thermal expansion curves were analyzed through regression to establish the dynamic model of DP780 steel phase transformation under stress.Subsequently,metallographic analysis was conducted to determine phase transformation type and grain size of DP780 steel.The results confirmed that the stress promotes the occurrence of semi-diffusion-type bainite transformation.Furthermore,an appropriate level of stress facilitates the growth of bainitic grains,while the increased stress inhibits the growth of ferritic grains.
基金Sponsored by National High-tech Research and Development Program(863Program) of China(2006AA03Z529)
文摘The effects of deformation temperature and strain on bainite transformation of low carbon steel and boron- containing steel were investigated under continuous cooling conditions by means of dilatometric measurement and mi- crostructure observation. The results show that with decreasing the deformation temperature from 1000 to 800 ℃ and increasing strains, bainite start temperature for boron-containing low carbon steel increases, whereas it decreases for low carbon steel under the same condition. The bainite microstructures are easily obtained for boron-containing steel deformed at different temperatures and different strains compared with plain low carbon steel. With increasing the continuous cooling rate, the bainite start temperature under deformed condition is about 20 ℃ higher than that under undeformed condition for boron-containing steel, but it changes slightly when the cooling rate is 20 ℃/s or more.
文摘The lath-or plate-shaped bainitic ferrite of low and medium carbon alloy steels consists of packets of ferrite sublaths which are composed of many finer and regular ferrite blocks.They are uniform shear growth units of bainitic phase transformation.No carbide is precipitated from them.The bainitic O-carbides are precipitated from γ-α interface or carbon-rich austenite.The mode of arrangement of the units in ferrite sublath packet is in uni-or bi-di- rection.Single surface relief is produced by the accumulation of uniform shear strains with all the ferrite units arranged unidirectionally in a sublath packet,while tent-shaped surface relief is formed by the integration of the uniform shear strains of two groups with ferrite units piling up in two directions and growing face to face;whereas if they grow back to back,the integra- tion will be responsible for invert-tent-shaped surface relief.The interface trace between two groups of ferrite units in a sublath packet is shown as“midrib”.
基金This work was supported by the National Natural Science Foundation of China(Grant No.52101059)the Shenyang National Laboratory for Materials Science(Grant No.L2019F48).
文摘Effects of solute rare earth(RE)on continuous cooling transformation of a low-alloy Cr–Mo–V bainitic steel are investigated in detail by dilatometry,optical microscopy(OM),scanning electron microscopy(SEM)and transmission electron microscopy(TEM).Microstructures appeared in thermal dilatometric samples of both low-alloy Cr–Mo–V(RE)steels are composed of quasi-polygonal ferrite(QPF),degenerate pearlite(DP),granular bainite(GB),lath bainite(LB),and martensite(M)depending on cooling rate.When cooling rate is lower than 2°C/s,the addition of RE suppresses QPF transformation,and thereby inducing a broader transformation region of GB.When cooling rate ranges from 2 to 100°C/s,the addition of RE decreases the start temperature of bainitic transformation distinctly,which results in finer bainitic ferrite grain size and higher dislocation density.The addition of RE can enhance the hardness of the low alloy Cr–Mo–V steel by affecting the aforementioned diffusional and/or partly displacive transformation.However,when cooling rate increases up to 150°C/s,two steels have the same hardness value of about 435 HV due to only martensite obtained by displacive transformation.
文摘Due to the excellent comprehensive mechanical properties and toughness of bainite steels,bainite is regarded as a most desirable microstructure for the new generation of high-strength weathering steels.The formation of bainite was observed in real time in a high-strength weathering steel,and the results showed that bainite laths show impingement during phase transformation.The preferred regions of nucleation sites were identified,and the growth rate of bainite was measured.The growth mechanism of bainite was demonstrated to exhibit growth rate contributions from both the diffusion mechanism and the shear mechanism.Subsequently,the heterogeneous phases that form preferred sites for bainite nucleation were quantitatively identified by scanning electron microscopy(SEM),energy-dispersive X-ray spectrometry(EDS),and calculation of phase diagram(CALPHAD).The austenite grain sizes in crease with increasing austenite temperature,which leads to longer bainite laths.The influence of a small lattice disregistry between the heterogeneous phases and bainite on the bainite nucleation was studied.The disregistries between the favorable heterogeneous phases of VN,VC,TiN,or TiC and the ot-Fe in bainite are 2.9,3.1,3.9,and 4.6%,respectively.Therefore,VN,VC,TiN,and TiC can act as highly effective nuclei for bainite during the bainite transformation.
基金This work was financially supported by the Research Project of Hebei Provincial Department of Education(No.QN2018144)the National Natural Science Foundation of China(No.51831008).
文摘The bainitic transformation of the steels with different mass fractions of N, ~0.002% and 0.021%, was observed in situ by using high-temperature metalloscope. Micrometer-and nanometer-sized aluminum nitride(AlN) particles were found in the steel with 0.021% N.Grain boundaries, the interior of the grains, and Al N particles were used as initial nucleation sites of bainitic ferrite, and bainitic ferrite subunits served as new nucleation sites to induce secondary nucleation. The lengthening rate of bainitic ferrite varied at different nucleation sites, which was controlled by the repeated nucleation and growth of bainitic subunits. The Al N particles not only provided several nucleation sites, but also increased the autocatalytic effect on the transformation, further shortening the incubation period, promoting the bainitic transformation, and refining the bainitic microstructure.
基金support from National Key Research and Development Program of China(No.2019YFA0209900)National Natural Science Foundation of China(No.52130102)+5 种基金Research Grants Council of Hong Kong(No.R7066–18)Guangzhou Municipal Science and Technology Project(No.202007020007)Guangdong Basic and Applied Basic Research Foundation of China(No.2020B1515130007)support from National Natural Science Foundation of China(No.52130110)support from National Natural Science Foundation of China(No.52271116)Hong Kong Scholars Program(No.XJ2019029).
文摘Bainite transformation has yet to be utilized and even thoroughly studied in medium Mn steels.Here,we investigate the isothermal bainite transformation in a 10Mn steel at 450°C experimentally and theoretically,focusing on the effect of dislocations introduced by warm deformation.We show that the bainite transformation in the studied medium Mn steel exhibits extremely sluggish kinetics(on a time scale of days),concurrent with the pearlite formation.The introduced dislocations can significantly accelerate bainite transformation kinetics while also facilitating the pearlite reaction.This is likely the first report on the simultaneous occurrence of these two solid-state reactions in medium Mn steels.With respect to the roles of dislocations in the acceleration of bainite transformation observed in this work,we propose a new‘carbon depletion mechanism’,in which dislocations-stimulated pearlite formation makes a twofold contribution:facilitating the formation of bainitic ferrite sub-units to further enhance the autocatalytic effect and preventing the carbon enrichment in the remaining austenite.On this basis,a physical model is developed to quantitatively understand the bainite transformation kinetics considering the effect of concurrent pearlite formation,revealing good agreements between model descriptions and experiment results.Our findings,herein,offer fundamental insights into the bainite transformation in medium Mn steels and uncover a previously unidentified role played by introduced dislocations in influencing the kinetics of bainite formation,which may guide its future application in manipulating microstructure for the development of advanced high-strength steels.