This paper presents a new basis, the WSB basis, which unifies the Bemstein basis, Wang-Ball basis and Said-Ball basis, and therefore the Bézier curve, Wang-Ball curve and Said-Ball curve are the special cases of ...This paper presents a new basis, the WSB basis, which unifies the Bemstein basis, Wang-Ball basis and Said-Ball basis, and therefore the Bézier curve, Wang-Ball curve and Said-Ball curve are the special cases of the WSB curve based on the WSB basis In addition, the relative degree elevation formula, recursive algorithm and conversion formula between the WSB basis and the Bern- stein basis are given.展开更多
A family of Said-Bézier type generalized Ball (SBGB) bases and surfaces with a parameter H over triangular domain is introduced,which unifies Bézier surface and Said-Ball surface and includes several inter...A family of Said-Bézier type generalized Ball (SBGB) bases and surfaces with a parameter H over triangular domain is introduced,which unifies Bézier surface and Said-Ball surface and includes several intermediate surfaces. To convert different bases and surfaces,the dual functionals of bases are presented. As an application of dual functionals,the subdivision formulas for surfaces are established.展开更多
基金Supported by the Key Project of Chinese Ministry of Education(No.309017)the National Natural Science Foundation of China(No.60473114)the Anhui Provincial Natural Science Foundation(No.07041627)
文摘This paper presents a new basis, the WSB basis, which unifies the Bemstein basis, Wang-Ball basis and Said-Ball basis, and therefore the Bézier curve, Wang-Ball curve and Said-Ball curve are the special cases of the WSB curve based on the WSB basis In addition, the relative degree elevation formula, recursive algorithm and conversion formula between the WSB basis and the Bern- stein basis are given.
文摘A family of Said-Bézier type generalized Ball (SBGB) bases and surfaces with a parameter H over triangular domain is introduced,which unifies Bézier surface and Said-Ball surface and includes several intermediate surfaces. To convert different bases and surfaces,the dual functionals of bases are presented. As an application of dual functionals,the subdivision formulas for surfaces are established.