"Network MIMO" is implemented to eliminate intercell interference and improve spectral efficiency.Several system models are introduced here and synchronous and asynchronous interference are considered.This p..."Network MIMO" is implemented to eliminate intercell interference and improve spectral efficiency.Several system models are introduced here and synchronous and asynchronous interference are considered.This paper also has a look on the algorithms on the uplink decoding and downlink precoding in network MIMO with base station coordination.Two levels of base station coordination and cellular backhaul are presented,too.展开更多
There are fundamentally two different communication media in wireless underground sensor networks. The first of these is a solid medium where the sensor nodes are buried underground and wirelessly transmit data from u...There are fundamentally two different communication media in wireless underground sensor networks. The first of these is a solid medium where the sensor nodes are buried underground and wirelessly transmit data from underground to aboveground. The second is an underground medium such as tunnel, cave etc. and the data is transmitted from underground to the aboveground through partially solid medium. The quality of communication is greatly influenced by the humidity of the soil in both environments. The placement of wireless underground sensor nodes at hard-to-reach locations makes energy efficient work compulsory. In this paper, rule based collector station selection scheme is proposed for lossless data transmission in underground sensor networks. In order for sensor nodes to transmit energy-efficient lossless data, rulebased selection operations are carried out with the help of fuzzy logic. The proposed wireless underground sensor network is simulated using Riverbed software, and fuzzy logic-based selection scheme is implemented utilizing Matlab software. In order to evaluate the performance of the sensor network;the parameters of delay, throughput and energy consumption are investigated. Examining performance evaluation results, it is seen that average delay and maximum throughput are accomplished in the proposed underground sensor network. Under these conditions, it has been shown that the most appropriate collector station selection decision is made with the aim of minimizing energy consumption.展开更多
Sensor nodes in a wireless sensor network (WSN) are typically powered by batteries, thus the energy is constrained. It is our design goal to efficiently utilize the energy of each sensor node to extend its lifetime,...Sensor nodes in a wireless sensor network (WSN) are typically powered by batteries, thus the energy is constrained. It is our design goal to efficiently utilize the energy of each sensor node to extend its lifetime, so as to prolong the lifetime of the whole WSN. In this paper, we propose a path-based data aggregation scheme (PBDAS) for grid-based wireless sensor networks. In order to extend the lifetime of a WSN, we construct a grid infrastructure by partitioning the whole sensor field into a grid of cells. Each cell has a head responsible for aggregating its own data with the data sensed by the others in the same cell and then transmitting out. In order to efficiently and rapidly transmit the data to the base station (BS), we link each cell head to form a chain. Each cell head on the chain takes turn becoming the chain leader responsible for transmitting data to the BS. Aggregated data moves from head to head along the chain, and finally the chain leader transmits to the BS. In PBDAS, only the cell heads need to transmit data toward the BS. Therefore, the data transmissions to the BS substantially decrease. Besides, the cell heads and chain leader are designated in turn according to the energy level so that the energy depletion of nodes is evenly distributed. Simulation results show that the proposed PBDAS extends the lifetime of sensor nodes, so as to make the lifetime of the whole network longer.展开更多
Clustering algorithms can balance the power consumption of energy constraint wireless sensor networks. This paper proposes a new clustering protocol called Mean Territorial Energy Based Clustering Protocol (MTEP) for ...Clustering algorithms can balance the power consumption of energy constraint wireless sensor networks. This paper proposes a new clustering protocol called Mean Territorial Energy Based Clustering Protocol (MTEP) for randomly deployed wireless sensor networks. In MTEP, cluster heads are selected according to residual energy and location information of a node in current round as well as mean territorial energy and total base station distance of node’s corresponding cluster territory in previous round. Energy consumption in conventional protocols becomes unbalanced because of clusters having different lengths. Proposed MTEP protocol addresses this problem by setting thresholds on cluster length and node to cluster head distance for producing equal length clusters. Simulation results show that MTEP protocol extends network lifetime and stability with reduction in energy dissipation compared to other clustering protocols such as LEACH and REAC.展开更多
Antenna and base-station diversity have been applied to a wireless sensor network for the monitoring of live-stock. A field trial has been described and the advantage to be gained in a practical environment has been a...Antenna and base-station diversity have been applied to a wireless sensor network for the monitoring of live-stock. A field trial has been described and the advantage to be gained in a practical environment has been assessed.展开更多
With the explosive growth of highspeed wireless data demand and the number of mobile devices, fog radio access networks(F-RAN) with multi-layer network structure becomes a hot topic in recent research. Meanwhile, due ...With the explosive growth of highspeed wireless data demand and the number of mobile devices, fog radio access networks(F-RAN) with multi-layer network structure becomes a hot topic in recent research. Meanwhile, due to the rapid growth of mobile communication traffic, high cost and the scarcity of wireless resources, it is especially important to develop an efficient radio resource management mechanism. In this paper, we focus on the shortcomings of resource waste, and we consider the actual situation of base station dynamic coverage and user requirements. We propose a spectrum pricing and allocation scheme based on Stackelberg game model under F-RAN framework, realizing the allocation of resource on demand. This scheme studies the double game between the users and the operators, as well as between the traditional operators and the virtual operators, maximizing the profits of the operators. At the same time, spectrum reuse technology is adopted to improve the utilization of network resource. By analyzing the simulation results, it is verified that our proposed scheme can not only avoid resource waste, but also effectively improve the operator's revenue efficiency and overall network resource utilization.展开更多
随着物联网(IoT, internet of things)基站的部署愈发密集,网络干扰管控的重要性愈发凸显。物联网中,设备常采用随机接入,以分布式的方式接入信道。在海量设备的物联网场景中,节点之间可能会出现严重的干扰,导致网络的吞吐量性能严重下...随着物联网(IoT, internet of things)基站的部署愈发密集,网络干扰管控的重要性愈发凸显。物联网中,设备常采用随机接入,以分布式的方式接入信道。在海量设备的物联网场景中,节点之间可能会出现严重的干扰,导致网络的吞吐量性能严重下降。为了解决随机接入网络中的干扰管控问题,考虑基于协作接收的多基站时隙Aloha网络,利用强化学习工具,设计自适应传输算法,实现干扰管控,优化网络的吞吐量性能,并提高网络的公平性。首先,设计了基于Q-学习的自适应传输算法,通过仿真验证了该算法面对不同网络流量时均能保障较高的网络吞吐量性能。其次,为了提高网络的公平性,采用惩罚函数法改进自适应传输算法,并通过仿真验证了面向公平性优化后的算法能够大幅提高网络的公平性,并保障网络的吞吐性能。展开更多
文摘"Network MIMO" is implemented to eliminate intercell interference and improve spectral efficiency.Several system models are introduced here and synchronous and asynchronous interference are considered.This paper also has a look on the algorithms on the uplink decoding and downlink precoding in network MIMO with base station coordination.Two levels of base station coordination and cellular backhaul are presented,too.
文摘There are fundamentally two different communication media in wireless underground sensor networks. The first of these is a solid medium where the sensor nodes are buried underground and wirelessly transmit data from underground to aboveground. The second is an underground medium such as tunnel, cave etc. and the data is transmitted from underground to the aboveground through partially solid medium. The quality of communication is greatly influenced by the humidity of the soil in both environments. The placement of wireless underground sensor nodes at hard-to-reach locations makes energy efficient work compulsory. In this paper, rule based collector station selection scheme is proposed for lossless data transmission in underground sensor networks. In order for sensor nodes to transmit energy-efficient lossless data, rulebased selection operations are carried out with the help of fuzzy logic. The proposed wireless underground sensor network is simulated using Riverbed software, and fuzzy logic-based selection scheme is implemented utilizing Matlab software. In order to evaluate the performance of the sensor network;the parameters of delay, throughput and energy consumption are investigated. Examining performance evaluation results, it is seen that average delay and maximum throughput are accomplished in the proposed underground sensor network. Under these conditions, it has been shown that the most appropriate collector station selection decision is made with the aim of minimizing energy consumption.
基金supported by the NSC under Grant No.NSC-101-2221-E-239-032 and NSC-102-2221-E-239-020
文摘Sensor nodes in a wireless sensor network (WSN) are typically powered by batteries, thus the energy is constrained. It is our design goal to efficiently utilize the energy of each sensor node to extend its lifetime, so as to prolong the lifetime of the whole WSN. In this paper, we propose a path-based data aggregation scheme (PBDAS) for grid-based wireless sensor networks. In order to extend the lifetime of a WSN, we construct a grid infrastructure by partitioning the whole sensor field into a grid of cells. Each cell has a head responsible for aggregating its own data with the data sensed by the others in the same cell and then transmitting out. In order to efficiently and rapidly transmit the data to the base station (BS), we link each cell head to form a chain. Each cell head on the chain takes turn becoming the chain leader responsible for transmitting data to the BS. Aggregated data moves from head to head along the chain, and finally the chain leader transmits to the BS. In PBDAS, only the cell heads need to transmit data toward the BS. Therefore, the data transmissions to the BS substantially decrease. Besides, the cell heads and chain leader are designated in turn according to the energy level so that the energy depletion of nodes is evenly distributed. Simulation results show that the proposed PBDAS extends the lifetime of sensor nodes, so as to make the lifetime of the whole network longer.
文摘Clustering algorithms can balance the power consumption of energy constraint wireless sensor networks. This paper proposes a new clustering protocol called Mean Territorial Energy Based Clustering Protocol (MTEP) for randomly deployed wireless sensor networks. In MTEP, cluster heads are selected according to residual energy and location information of a node in current round as well as mean territorial energy and total base station distance of node’s corresponding cluster territory in previous round. Energy consumption in conventional protocols becomes unbalanced because of clusters having different lengths. Proposed MTEP protocol addresses this problem by setting thresholds on cluster length and node to cluster head distance for producing equal length clusters. Simulation results show that MTEP protocol extends network lifetime and stability with reduction in energy dissipation compared to other clustering protocols such as LEACH and REAC.
文摘Antenna and base-station diversity have been applied to a wireless sensor network for the monitoring of live-stock. A field trial has been described and the advantage to be gained in a practical environment has been assessed.
基金supported in part by the National Natural Science Foundation of China (61771120)the Fundamental Research Funds for the Central Universities (N171602002)
文摘With the explosive growth of highspeed wireless data demand and the number of mobile devices, fog radio access networks(F-RAN) with multi-layer network structure becomes a hot topic in recent research. Meanwhile, due to the rapid growth of mobile communication traffic, high cost and the scarcity of wireless resources, it is especially important to develop an efficient radio resource management mechanism. In this paper, we focus on the shortcomings of resource waste, and we consider the actual situation of base station dynamic coverage and user requirements. We propose a spectrum pricing and allocation scheme based on Stackelberg game model under F-RAN framework, realizing the allocation of resource on demand. This scheme studies the double game between the users and the operators, as well as between the traditional operators and the virtual operators, maximizing the profits of the operators. At the same time, spectrum reuse technology is adopted to improve the utilization of network resource. By analyzing the simulation results, it is verified that our proposed scheme can not only avoid resource waste, but also effectively improve the operator's revenue efficiency and overall network resource utilization.
基金国家自然科学基金资助项目(12004275)Shanxi Scholarship Council of China(2020-042)山西省自然科学基金资助项目(20210302123186)。
文摘【目的】为了更精准地预测5G基站的流量,分析潮汐现象,提出一种优化的生成对抗网络(generative adversarial network,GAN)模型流量预测方法,并将其用于实际基站的定时控制中。【方法】GAN的生成器利用差分演化灰狼算法优化长短时记忆网络(long short term memory networks,LSTM),判别器使用门控循环神经网络(gated recurrent unit,GRU)进行判别,生成器和判别器利用不断地对抗训练达到均衡从而提高了5G基站流量的预测精度;其次,利用改进人工蜂群优化k-means++算法,将其用于输出最优基站定时时间,达到最大限度节能的目的。【结果】实验结果表明,与现有模型相比,所提预测模型有更高的预测精度,定时控制功能可极大地节约能耗。
文摘随着物联网(IoT, internet of things)基站的部署愈发密集,网络干扰管控的重要性愈发凸显。物联网中,设备常采用随机接入,以分布式的方式接入信道。在海量设备的物联网场景中,节点之间可能会出现严重的干扰,导致网络的吞吐量性能严重下降。为了解决随机接入网络中的干扰管控问题,考虑基于协作接收的多基站时隙Aloha网络,利用强化学习工具,设计自适应传输算法,实现干扰管控,优化网络的吞吐量性能,并提高网络的公平性。首先,设计了基于Q-学习的自适应传输算法,通过仿真验证了该算法面对不同网络流量时均能保障较高的网络吞吐量性能。其次,为了提高网络的公平性,采用惩罚函数法改进自适应传输算法,并通过仿真验证了面向公平性优化后的算法能够大幅提高网络的公平性,并保障网络的吞吐性能。