期刊文献+
共找到2,505篇文章
< 1 2 126 >
每页显示 20 50 100
The Future Trend of E-Mobility in Terms of Battery Electric Vehicles and Their Impact on Climate Change: A Case Study Applied in Hungary
1
作者 Mohamad Ali Saleh Saleh 《American Journal of Climate Change》 2024年第2期83-102,共20页
The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term ... The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term strategy, there are two ways to reduce the amount of CO2 emissions in the transportation sector. The first way is characterized by creating more efficient vehicles. In contrast, the second way is characterized by changing the fuel used. The current study addressed the second way, changing the fuel type. The study examined the potential of battery electric vehicles (BEVs) as an alternative fuel type to reduce CO2 emissions in Hungarys transportation sector. The study used secondary data retrieved from Statista and stata.com to analyze the future trends of BEVs in Hungary. The results showed that the percentage of BEVs in Hungary in 2022 was 0.4% compared to the total number of registered passenger cars, which is 3.8 million. The simple exponential smoothing (SES) time series forecast revealed that the number of BEVs is expected to reach 84,192 in 2030, indicating a percentage increase of 2.21% in the next eight years. The study suggests that increasing the number of BEVs is necessary to address the negative impact of CO2 emissions on society. The Hungarian Ministry of Innovation and Technologys strategy to reduce the cost of BEVs may increase the percentage of BEVs by 10%, resulting in a potential average reduction of 76,957,600 g/km of CO2 compared to gasoline, diesel, hybrid electric vehicles (HEVs), and plug-in hybrid vehicles (PHEVs). 展开更多
关键词 battery electric vehicles (bevS) GASOLINE DIESEL Hybrid electric vehicles (HEVs) Plug-In Hybrid vehicles (PHEVs) Climate Change Carbon Dioxide (CO2) Emissions
下载PDF
Alternating current heating techniques for lithium-ion batteries in electric vehicles:Recent advances and perspectives
2
作者 Xinrong Huang Jinhao Meng +5 位作者 Wei Jiang Wenjie Liu Kailong Liu Yipu Zhang Daniel-Ioan Stroe Remus Teodorescu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期679-697,共19页
The significant decrease in battery performance at low temperatures is one of the critical challenges that electric vehicles(EVs)face,thereby affecting the penetration rate in cold regions.Alternating current(AC)heati... The significant decrease in battery performance at low temperatures is one of the critical challenges that electric vehicles(EVs)face,thereby affecting the penetration rate in cold regions.Alternating current(AC)heating has attracted widespread attention due to its low energy consumption and uniform heating advantages.This paper introduces the recent advances in AC heating from the perspective of practical EV applications.First,the performance degradation of EVs in low-temperature environments is introduced briefly.The concept of AC heating and its research methods are provided.Then,the effects of various AC heating methods on battery heating performance are reviewed.Based on existing studies,the main factors that affect AC heating performance are analyzed.Moreover,various heating circuits based on EVs are categorized,and their cost,size,complexity,efficiency,reliability,and heating rate are elaborated and compared.The evolution of AC heaters is presented,and the heaters used in brand vehicles are sorted out.Finally,the perspectives and challenges of AC heating are discussed.This paper can guide the selection of heater implementation methods and the optimization of heating effects for future EV applications. 展开更多
关键词 Lithium-ion battery Low temperature Alternating current heating HEATER electric vehicle
下载PDF
Drive Train Cooling Options for Electric Vehicles
3
作者 Randeep Singh Tomoki Oridate Tien Nguyen 《Frontiers in Heat and Mass Transfer》 EI 2024年第3期703-717,共15页
Electrification of vehicles intensifies their cooling demands due to the requirements of maintaining electronics/electrical systems below their maximum temperature threshold.In this paper,passive cooling approaches ba... Electrification of vehicles intensifies their cooling demands due to the requirements of maintaining electronics/electrical systems below their maximum temperature threshold.In this paper,passive cooling approaches based on heat pipes have been considered for the thermal management of electric vehicle(EV)traction systems including battery,inverter,and motor.For the battery,a heat pipe base plate is used to provide high heat removal(180 W per module)and better thermal uniformity(<5°C)for the battery modules in a pack while downsizing the liquid cold plate system.In the case of Inverter,two phase cooling system based on heat pipes was designed to handle hot spots arising from high heat flux(∼100 W/cm2)–for liquid cooling and provide location independence and a dedicated cooling approach-for air cooling.For EV motors,heat pipebased systems are explored for stator and rotor cooling.The paper also provides a glimpse of development on high-performance microchannel-based cold plate technologies based on parallel fins and multi-layer 3D stacked structures.Specifically,this work extends the concept of hybridization of two-phase technology based on heat pipes with single-phase technology,predominately based on liquid cooling,to extend performance,functionalities,and operational regime of cooling solutions for components of EV drive trains.In summary,heat pipes will help to improve and extend the overall reliability,performance,and safety of air and liquid cooling systems in electric vehicles. 展开更多
关键词 Li-ion battery INVERTER motor electric vehicle heat pipe two-phase cooling high performance cold plate
下载PDF
Design and Implementation of a Battery Big Data Platform Through Intelligent Connected Electric Vehicles 被引量:1
4
作者 Rui Xiong Baoqiang Zhu +2 位作者 Kui Zhang Yanzhou Duan Fengchun Sun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期291-301,共11页
The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for... The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for failure and safety management research.This study developed a battery big data platform to realize vehicle operation,energy interaction and data management.First,we developed an electric vehicle with vehicle navigation and position detection and designed an environmental cabin that allows the vehicle to operate autonomously.Second,charging and heating systems based on wireless energy transfer were developed and equipped on the vehicle to investigate optimal charging and heating methods of the batteries in the vehicle.Third,the data transmission network was designed,a real-time monitoring interface was developed,and the self-developed battery management system was used to measure,collect,upload,and store battery operation data in real time.Finally,experimental validation was performed on the platform.Results demonstrate the efficiency and reliability of the platform.Battery state of charge estimation is used as an example to illustrate the availability of battery operation data. 展开更多
关键词 Intelligent connected electric vehicle battery Operation data State estimation Wireless energy transfer
下载PDF
Reinforcement Learning-Based Electric Vehicles Energy Management Strategy with Battery Thermal Model 被引量:1
5
作者 黄淦 曹童杰 +2 位作者 韩俊华 赵萍 张光林 《Journal of Donghua University(English Edition)》 CAS 2023年第1期80-87,共8页
The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning... The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning energy management strategies focused on hybrids rather than the EVs.The work focusing on the energy management strategy for EVs mainly uses the traditional optimization strategies,thereby limiting the advantages of energy economy.To this end,a novel energy management strategy that considered the impact of battery thermal effects was proposed with the help of reinforcement learning.The main idea was to first analyze the energy flow path of EVs,further formulize the energy management as an optimization problem,and finally propose an online strategy based on reinforcement learning to obtain the optimal strategy.Additionally,extensive simulation results have demonstrated that our strategy reduces energy consumption by at least 27.4%compared to the existing methods. 展开更多
关键词 energy management electric vehicle(EV) reinforcement learning battery thermal management
下载PDF
Investigation into Impedance Measurements for Rapid Capacity Estimation of Lithium-ion Batteries in Electric Vehicles
6
作者 Xiaoyu Zhao Zuolu Wang +1 位作者 Eric Li Haiyan Miao 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第1期21-31,共11页
With the dramatic increase in electric vehicles(EVs)globally,the demand for lithium-ion batteries has grown dramatically,resulting in many batteries being retired in the future.Developing a rapid and robust capacity e... With the dramatic increase in electric vehicles(EVs)globally,the demand for lithium-ion batteries has grown dramatically,resulting in many batteries being retired in the future.Developing a rapid and robust capacity estimation method is a challenging work to recognize the battery aging level on service and provide regroup strategy of the retied batteries in secondary use.There are still limitations on the current rapid battery capacity estimation methods,such as direct current internal resistance(DCIR)and electrochemical impedance spectroscopy(EIS),in terms of efficiency and robustness.To address the challenges,this paper proposes an improved version of DCIR,named pulse impedance technique(PIT),for rapid battery capacity estimation with more robustness.First,PIT is carried out based on the transient current excitation and dynamic voltage measurement using the high sampling frequency,in which the coherence analysis is used to guide the selection of a reliable frequency band.The battery impedance can be extracted in a wide range of frequency bands compared to the traditional DCIR method,which obtains more information on the battery capacity evaluation.Second,various statistical variables are used to extract aging features,and Pearson correlation analysis is applied to determine the highly correlated features.Then a linear regression model is developed to map the relationship between extracted features and battery capacity.To validate the performance of the proposed method,the experimental system is designed to conduct comparative studies between PIT and EIS based on the two 18650 batteries connected in series.The results reveal that the proposed PIT can provide comparative indicators to EIS,which contributes higher estimation accuracy of the proposed PIT method than EIS technology with lower time and cost. 展开更多
关键词 electric vehicles electrochemical impedance spectroscopy lithium-ion battery pulse impedance technique rapid capacity estimation
下载PDF
Electric Vehicles Lithium-Polymer Ion Battery Dynamic Behaviour Charging Identification and Modelling Scheme 被引量:1
7
作者 Peter Makeen Hani AGhali +1 位作者 Saim Memon Fang Duan 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第3期170-176,共7页
Lithium-ion batteries are considered the substantial electrical storage element for electric vehicles(EVs). The battery model is the basis of battery monitoring, efficient charging, and safety management. Non-linearmo... Lithium-ion batteries are considered the substantial electrical storage element for electric vehicles(EVs). The battery model is the basis of battery monitoring, efficient charging, and safety management. Non-linearmodelling is the key to representing the battery and its dynamic internal parameters and performance. This paperproposes a smart scheme to model the lithium-polymer ion battery while monitoring its present charging currentand terminal voltage at various ambient conditions (temperature and relative humidity). Firstly, the suggestedframework investigated the impact of temperature and relative humidity on the charging process using the constantcurrent-constant voltage (CC-CV) charging protocol. This will be followed by monitoring the battery at thesurrounding operating temperature and relative humidity. Hence, efficient non-linear modelling of the EV batterydynamic behaviour using the Hammerstein-Wiener (H-W) model is implemented. The H-W model is considered ablack box model that can represent the battery without any mathematical equivalent circuit model which reducesthe computation complexity. Finally, the model beholds the boundaries of the charging process, not affecting onthe lifetime of the battery. Several dynamic models are applied and tested experimentally to ensure theeffectiveness of the proposed scheme under various ambient conditions where the temperature is fixed at40°C and the relative humidity (RH) at 35%, 52%, and 70%. The best fit using the H-W model reached 91.83% todescribe the dynamic behaviour of the battery with a maximum percentage of error 0.1 V which is in goodagreement with the literature survey. Besides, the model has been scaled up to represent a real EV and expressedthe significance of the proposed H-W model. 展开更多
关键词 battery identification electric vehicles EV fast charging Hammerstein-Wiener Lithium-polymer ion battery
下载PDF
Towards Realistic Vibration Testing of Large Floor Batteries for Battery Electric Vehicles (BEV)
8
作者 Benedikt Plaumann 《Sound & Vibration》 EI 2022年第1期1-19,共19页
This contribution shows an analysis of vibration measurement on large floor-mounted traction batteries of Battery Electric Vehicles(BEV).The focus lies on the requirements for a realistic replication of the mechanical... This contribution shows an analysis of vibration measurement on large floor-mounted traction batteries of Battery Electric Vehicles(BEV).The focus lies on the requirements for a realistic replication of the mechanical environments in a testing laboratory.Especially the analysis on global bending transfer functions and local corner bending coherence indicate that neither a fully stiff fixation of the battery nor a completely independent movement on the four corners yields a realistic and conservative test scenario.The contribution will further show what implication these findings have on future vibration&shock testing equipment for large traction batteries.Additionally,it will cover an outlook on how vibration behavior of highly integrated approaches(cell2car)changes the mechanical loads on the cells. 展开更多
关键词 battery electric vehicle bev shock and vibration vehicle floor bending rechargeable energy storage system RESS
下载PDF
Battery Management System with State ofCharge Indicator for Electric Vehicles 被引量:9
9
作者 孙逢春 张承宁 郭海涛 《Journal of Beijing Institute of Technology》 EI CAS 1998年第2期166-171,共6页
Aim To research and develop a battery management system(BMS)with the state of charge(SOC)indicator for electric vehicles (EVs).Methods On the basis of analyzing the electro-chemical characteristics of lead-acid. batte... Aim To research and develop a battery management system(BMS)with the state of charge(SOC)indicator for electric vehicles (EVs).Methods On the basis of analyzing the electro-chemical characteristics of lead-acid. battery, the state of charge indicator for lead-acid battery was developed by means of an algorithm based on combination of ampere-hour, Peukert's equation and open-voltage method with the compensation of temperature,aging,self- discharging,etc..Results The BMS based on this method can attain an accurate surplus capa- city whose error is less than 5% in static experiments.It is proved by experiments that the BMS is reliable and can give the driver an accurate surplus capacity,precisely monitor the individual battery modules as the same time,even detect and warn the problems early,and so on. Conclusion A BMS can make the energy of the storage batteries used efficiently, develop the batteries cycle life,and increase the driving distance of EVs. 展开更多
关键词 electric vehicle (EV) the battery management system (BMS) the stage of charge (SOC)indicator lead-acid battery
下载PDF
A Comprehensive Approach for the Clustering of Similar-Performance Cells for the Design of a Lithium-Ion Battery Module for Electric Vehicles 被引量:5
10
作者 Wei Li Siqi Chen +4 位作者 Xiongbin Peng Mi Xiao Liang Gao Akhil Garg Nengsheng Bao 《Engineering》 SCIE EI 2019年第4期795-802,共8页
An energy-storage system comprised of lithium-ion battery modules is considered to be a core component of new energy vehicles,as it provides the main power source for the transmission system.However,manufacturing defe... An energy-storage system comprised of lithium-ion battery modules is considered to be a core component of new energy vehicles,as it provides the main power source for the transmission system.However,manufacturing defects in battery modules lead to variations in performance among the cells used in series or parallel configuration.This variation results in incomplete charge and discharge of batteries and non-uniform temperature distribution,which further lead to reduction of cycle life and battery capacity over time.To solve this problem,this work uses experimental and numerical methods to conduct a comprehensive investigation on the clustering of battery cells with similar performance in order to produce a battery module with improved electrochemical performance.Experiments were first performed by dismantling battery modules for the measurement of performance parameters.The kmeans clustering and support vector clustering(SVC)algorithms were then employed to produce battery modules composed of 12 cells each.Experimental verification of the results obtained from the clustering analysis was performed by measuring the temperature rise in the cells over a certain period,while air cooling was provided.It was found that the SVC-clustered battery module in Category 3 exhibited the best performance,with a maximum observed temperature of 32℃.By contrast,the maximum observed temperatures of the other battery modules were higher,at 40℃for Category 1(manufacturer),36℃for Category 2(manufacturer),and 35℃for Category 4(k-means-clustered battery module). 展开更多
关键词 CLUSTERING algorithm battery MODULE EQUALIZATION electric vehicle
下载PDF
Online model identification of lithium-ion battery for electric vehicles 被引量:3
11
作者 胡晓松 孙逢春 邹渊 《Journal of Central South University》 SCIE EI CAS 2011年第5期1525-1531,共7页
In order to characterize the voltage behavior of a lithium-ion battery for on-board electric vehicle battery management and control applications,a battery model with a moderate complexity was established.The battery o... In order to characterize the voltage behavior of a lithium-ion battery for on-board electric vehicle battery management and control applications,a battery model with a moderate complexity was established.The battery open circuit voltage (OCV) as a function of state of charge (SOC) was depicted by the Nernst equation.An equivalent circuit network was adopted to describe the polarization effect of the lithium-ion battery.A linear identifiable formulation of the battery model was derived by discretizing the frequent-domain description of the battery model.The recursive least square algorithm with forgetting was applied to implement the on-line parameter calibration.The validation results show that the on-line calibrated model can accurately predict the dynamic voltage behavior of the lithium-ion battery.The maximum and mean relative errors are 1.666% and 0.01%,respectively,in a hybrid pulse test,while 1.933% and 0.062%,respectively,in a transient power test.The on-line parameter calibration method thereby can ensure that the model possesses an acceptable robustness to varied battery loading profiles. 展开更多
关键词 battery model on-line parameter identification lithium-ion battery electric vehicle
下载PDF
SOC distribution-based modeling for lithium-ion battery for electric vehicles using numerical optimization 被引量:2
12
作者 胡晓松 孙逢春 邹渊 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第5期49-54,共6页
In order to simulate electrical characteristics of a lithium-ion battery used in electric vehicles in a good manner,a three-layer battery model is established.The charge of the lithium-ion battery is assumed to distri... In order to simulate electrical characteristics of a lithium-ion battery used in electric vehicles in a good manner,a three-layer battery model is established.The charge of the lithium-ion battery is assumed to distribute among the three layers and their interaction is used to depict hysteresis and relaxation effect observed in the lithium-ion battery.The model parameters are calibrated and optimized through a numerically nonlinear least squares algorithm in Simulink Parameter Estimation Toolbox for an experimental data set sampled in a hybrid pulse test of the battery.Evaluation results showed that the established model is able to provide an acceptable accuracy in estimating the State of Charge of the lithium-ion battery in an open-loop fashion for a sufficiently long time and to describe the battery voltage behavior more accurately than a commonly used battery model.The battery modeling accuracy can thereby satisfy the requirement for practical electric vehicle applications. 展开更多
关键词 battery modeling SOC distribution numerical optimization lithium-ion battery electric vehicle
下载PDF
Dynamic Cell Modeling for Accurate SOC Estimation in Autonomous Electric Vehicles
13
作者 Qasim Ajao Lanre Sadeeq 《Journal of Power and Energy Engineering》 2023年第8期1-15,共15页
This paper presents findings on dynamic cell modeling for state-of-charge (SOC) estimation in an autonomous electric vehicle (AEV). The studied cells are Lithium-Ion Polymer-based with a nominal capacity of around 8 A... This paper presents findings on dynamic cell modeling for state-of-charge (SOC) estimation in an autonomous electric vehicle (AEV). The studied cells are Lithium-Ion Polymer-based with a nominal capacity of around 8 Ah, optimized for power-needy applications. The AEV operates in a harsh environment with rate requirements up to ±25C and highly dynamic rate profiles, unlike portable-electronic applications with constant power output and fractional C rates. SOC estimation methods effective in portable electronics may not suffice for the AEV. Accurate SOC estimation necessitates a precise cell model. The proposed SOC estimation method utilizes a detailed Kalman-filtering approach. The cell model must include SOC as a state in the model state vector. Multiple cell models are presented, starting with a simple one employing “Coulomb counting” as the state equation and Shepherd’s rule as the output equation, lacking prediction of cell relaxation dynamics. An improved model incorporates filter states to account for relaxation and other dynamics in closed-circuit cell voltage, yielding better performance. The best overall results are achieved with a method combining nonlinear autoregressive filtering and dynamic radial basis function networks. The paper includes lab test results comparing physical cells with model predictions. The most accurate models obtained have an RMS estimation error lower than the quantization noise floor expected in the battery-management-system design. Importantly, these models enable precise SOC estimation, allowing the vehicle controller to utilize the battery pack’s full operating range without overcharging or undercharging concerns. 展开更多
关键词 Autonomous electric Vehicle Modeling battery Model battery Management Systems (BMS) Lithium Polymer State of Charge Kalman-Filter
下载PDF
Rapid health estimation of in-service battery packs based on limited labels and domain adaptation
14
作者 Zhongwei Deng Le Xu +3 位作者 Hongao Liu Xiaosong Hu Bing Wang Jingjing Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期345-354,I0009,共11页
For large-scale in-service electric vehicles(EVs)that undergo potential maintenance,second-hand transactions,and retirement,it is crucial to rapidly evaluate the health status of their battery packs.However,existing m... For large-scale in-service electric vehicles(EVs)that undergo potential maintenance,second-hand transactions,and retirement,it is crucial to rapidly evaluate the health status of their battery packs.However,existing methods often rely on lengthy battery charging/discharging data or extensive training samples,which hinders their implementation in practical scenarios.To address this issue,a rapid health estimation method based on short-time charging data and limited labels for in-service battery packs is proposed in this paper.First,a digital twin of battery pack is established to emulate its dynamic behavior across various aging levels and inconsistency degrees.Then,increment capacity sequences(△Q)within a short voltage span are extracted from charging process to indicate battery health.Furthermore,data-driven models based on deep convolutional neural network(DCNN)are constructed to estimate battery state of health(SOH),where the synthetic data is employed to pre-train the models,and transfer learning strategies by using fine-tuning and domain adaptation are utilized to enhance the model adaptability.Finally,field data of 10 EVs exhibiting different SOHs are used to verify the proposed methods.By using the△Q with 100 m V voltage change,the SOH of battery packs can be accurately estimated with an error around 3.2%. 展开更多
关键词 Lithium-ion battery electric vehicles Health estimation Feature extraction Convolutional neural network Domain adapatation
下载PDF
Battery Charger for Electric Vehicles based on a Wireless Power Transmission 被引量:2
15
作者 Paolo Germano Yves Perriard 《CES Transactions on Electrical Machines and Systems》 2017年第1期66-71,共6页
In this paper,the case of a battery charger for electric vehicles based on a wireless power transmission is addressed.The specificity of every stage of the overall system is presented.Based on calculated and measured ... In this paper,the case of a battery charger for electric vehicles based on a wireless power transmission is addressed.The specificity of every stage of the overall system is presented.Based on calculated and measured results,relevant capacitive compensations of the transformer and models are suggested and discussed in order to best match the operating mode and aiming at simplifying as much as possible the control and the electronics of the charger. 展开更多
关键词 battery charge battery model control strategy converter topologies electric vehicle non-linear load SHIELDING wireless power transmission.
下载PDF
Network traffic flow evolution with battery electric vehicles and conventional gasoline vehicles
16
作者 Li Manman Lu Jian +1 位作者 Sun Jiahui Tu Qiang 《Journal of Southeast University(English Edition)》 EI CAS 2019年第2期213-219,共7页
In order to investigate the effect of the use of battery electric vehicles on traffic dynamics,the valid paths of electric battery vehicles are defined and a check-based method is proposed to obtain them.Then,assuming... In order to investigate the effect of the use of battery electric vehicles on traffic dynamics,the valid paths of electric battery vehicles are defined and a check-based method is proposed to obtain them.Then,assuming that travelers only focus on their past travel experience,a day-to-day traffic assignment model is established based on reinforcement learning and bounded rationality.In the proposed model,the Bush-Mosteller model,a reinforcement learning model,is modified to calculate path choice probability according to bounded rationality.The modified model updates the path choice probability only if the gap between expected travel time and perceived travel time is beyond the cognitive threshold.Numerical experiments validate the effectiveness of the model and show that traffic flows can converge to the equilibrium in any case of cognitive thresholds and penetration rates of battery electric vehicles.The cognitive threshold has a positive influence on the variation of traffic flows while it has a negative influence on the differences between traffic flows.The adaptation of battery electric vehicles leads to the poor performance of the traffic system. 展开更多
关键词 battery electric vehicles constrained path reinforcement learning bounded rationality traffic dynamics
下载PDF
A study on equivalent circuit model of lead-acid battery for electric vehicles
17
作者 王常青 Cheng Ximing 《High Technology Letters》 EI CAS 2010年第1期107-110,共4页
A 100Ah@42V lead-acid battery package for electric vehicles are used for study. 1he hybrid pulse test is applied to the battery package to acquire enough data, by which the partnership for a new generation of vehicles... A 100Ah@42V lead-acid battery package for electric vehicles are used for study. 1he hybrid pulse test is applied to the battery package to acquire enough data, by which the partnership for a new generation of vehicles (PNGV) equivalent circuit model parameters are identified by the least square method. Then, the PNGV model is verified under two conditions, i.e., the composite pulse excitation and the constant-current respectively. The corresponding maximum relative errors of output voltage are less than 3 % and 3.5 %. Results show that the present PNGV equivalent circuit model and verification method is effective, which can satisfy requirement of simulation of power system of electric vehicles. 展开更多
关键词 electric vehicle lead-acid battery equivalent circuit least squares partnership for a new generation of vehicles (PNGV)
下载PDF
Study on Charging Load Modeling and Coordinated Charging of Electric Vehicles Under Battery Swapping Modes
18
《中国电机工程学报》 EI CSCD 北大核心 2012年第31期I0001-I0026,共26页
关键词 电动汽车电池 交换模式 充电 负荷建模 国家电网公司 苏南地区 电网负荷 优化模型
原文传递
Development of Management Systems for Electric Vehicle Battery Series 被引量:2
19
作者 张承宁 孙逢春 +1 位作者 赵宏杰 孙立清 《Journal of Beijing Institute of Technology》 EI CAS 2000年第1期94-100,共7页
A kind of management system for electric vehicle (EV) battery series was developed. The system can predict residual capacity for EV battery series and mileages. The system can determine if it is necessary for the batt... A kind of management system for electric vehicle (EV) battery series was developed. The system can predict residual capacity for EV battery series and mileages. The system can determine if it is necessary for the battery series to be charged. The system can determine which battery is necessary to be updated for the reason of damage or aging. The system can display the total voltage of battery series, extreme voltage and temperature of every battery in the series. The system can display the accumulative discharge for every battery in the series. The system can alarm when both total or extreme voltage is at low level, or temperature of a battery in the series is at high level. The system provided with a microprocessor as key part can collect and record signal of charging and discharging current, total voltage, extreme voltage and temperature for every battery. The mathematical model of residual capacity for EV lead acid batteries was discussed in details. The system operates well in the laboratory and meets the requirement. 展开更多
关键词 electric vehicle (EV) residual capacity trouble diagnosis lead acid batteries
下载PDF
基于ADVISOR的BEV电动汽车动力参数优化与仿真研究
20
作者 刘福华 《机械管理开发》 2023年第5期26-28,共3页
通过对纯电动汽车动力参数进行优化改进,并利用ADVISOR仿真软件建立电动汽车仿真模型。利用优化后的电动汽车动力参数进行仿真模拟测试并对其运行状态进行分析,仿真结果更为直观,能够精确显示模型的具体运行参数,为电动汽车的研发设计... 通过对纯电动汽车动力参数进行优化改进,并利用ADVISOR仿真软件建立电动汽车仿真模型。利用优化后的电动汽车动力参数进行仿真模拟测试并对其运行状态进行分析,仿真结果更为直观,能够精确显示模型的具体运行参数,为电动汽车的研发设计带来极大便利。 展开更多
关键词 bev电动汽车 参数优化 仿真模拟
下载PDF
上一页 1 2 126 下一页 到第
使用帮助 返回顶部