Check dams are the most commonly used engineering measure for debris flow control worldwide.The scour and siltation characteristics between dams are important factors affecting dam design.In this study,classical dimen...Check dams are the most commonly used engineering measure for debris flow control worldwide.The scour and siltation characteristics between dams are important factors affecting dam design.In this study,classical dimensional analysis of the variables that influence the development of gully bed scour and siltation was carried out.Flume experiments were conducted to examine the influence characteristics of opening width,flume slope,debris flow density,and opening rate on the characteristics of gully bed scour and siltation.The influential characteristics of variables on the dimensionless scour depth,scour length,siltation length,scour volume and siltation volume were obtained.The experiments showed that,with an increase in the relative opening from 1.5 to 2.5,scour depth increased by 7.4%,scour length decreased by 11.2%,siltation length increased by 22.0%,scour volume decreased by 4.7%and siltation volume increased by 22.0%.With an increase in flume gradient from 0.105 to 0.213,scour depth,siltation length and siltation volume increased by 40.0%,65.9%and 65.9%,respectively,and scour length decreased by 20.1%.With an increase in sediment concentration from 0.303 to 0.545,siltation length and siltation volume increased by 15.4%and 15.4%,respectively,and scour depth,scour length and scour volume decreased by 9.6%,9.1%and 17.8%,respectively.As opening rate increased from 0.08 to 0.32,siltation length and siltation volume increased by 33.3%and 33.3%,respectively,and scour depth,scour length and scour volume decreased by 5.4%,13.7%and 18.4%,respectively.The results showed that the flume gradient was the most influential factor on scour depth,scour length,siltation length and siltation volume,and the sediment concentration was the most influential factor on scour volume.Then,according to the experimental data,some empirical formulas predicting scour depth,scour length,siltation length,scour volume and siltation volume were obtained.The error between the computed values according to the formulas in this paper and the observed values was within±10%.These research results may provide a technological basis for window dam design in debris flow disaster prevention and mitigation.展开更多
Elucidating the flow features around piles in local scouring processes is crucial for studies of local scouring mechanisms and scour depth estimates.This study details the flow turbulence characteristics of two submer...Elucidating the flow features around piles in local scouring processes is crucial for studies of local scouring mechanisms and scour depth estimates.This study details the flow turbulence characteristics of two submerged piles that are determined by solving the Navier-Stokes equations with the improved delayed detached eddy simulation model.This model is verified by comparing experimental and numerical results for hydrodynamic parameters with the literature for both square-crossing piles(SCPs)and circular-crossing piles(CCPs).Original topographies of flat and scoured beds(i.e.,the initial and equilibrium scouring stages)are based on experimental results obtained by the authors in the present paper.SCP and CCP flow features in the scouring process are discussed.The results indicate that during the scouring process,the time-averaged drag coefficient and root mean square(rms)of the lift coefficient increase linearly in the CCP test,while the rms of the lift coefficient in the SCP test decreases linearly.Moreover,the minimum pressure coefficient is always located in the upstream corners in the SCP case but moves from 72.5°to 79.5°when the scour hole is completely developed in the CCP case.Downward flow behind the pile,which is generated by separated boundary layers above the top face of the pile,can reach the sand bed and turn the separated shear layers into patches of small vortices in the near-wake regions.Thus,the high shear stress zones are mainly at the scour edges under scoured-bed conditions.展开更多
Dambreak-induced bed scouring may undermine the foundation of bridge piers and other structures,and that destruction can pose a serious threat.Consequently,this paper aims at exploring the mechanisms of scouring and a...Dambreak-induced bed scouring may undermine the foundation of bridge piers and other structures,and that destruction can pose a serious threat.Consequently,this paper aims at exploring the mechanisms of scouring and armoring.Firstly,the incipient velocity for nonuniform sediment particles was studied,and a formula was derived based on the angle of repose of nonuniform sediment.The results showed that the mechanism of incipient motion for sand and fine gravel differed from that for coarse gravel and cobbles.Also,comparison between experimental and field data shows that the results from the proposed formula agree well with those observed for all conditions.Secondly,a birth-death,immigration-emigration Markov process was developed to describe the bed load transport rate associated with scouring and armoring.The comparison between experimental data and computed results shows that our model can predict the bed load transport rate,although there may be some limitations,the chief of which is that there are many variables in the model to be determined through experiment.This makes its application in river engineering inconvenient.展开更多
Flume experiments were carried out to study bed load transport rate during rive bed scouring and ar- moring.A theoretical differential equation linking the transport rate to the probability of incipient motion of non-...Flume experiments were carried out to study bed load transport rate during rive bed scouring and ar- moring.A theoretical differential equation linking the transport rate to the probability of incipient motion of non-uniform sediment is solved.The transport rate is shown to decrease exponentially with time,according to the theory,which is in good agreement with the experiment data.展开更多
Various river projects are underway in small rivers in Korea that typically have natural flows. However, recent findings have shown that damages could be aggravated by structures such as weirs and drop structures duri...Various river projects are underway in small rivers in Korea that typically have natural flows. However, recent findings have shown that damages could be aggravated by structures such as weirs and drop structures during flood incidents. Experimental studies for securing the stability of flood control for these artificial structures have been insufficient, and designs applying the existing domestic design standards would not be suitable for the steep flow sections such as the actual small rivers, possibly aggravating the damages. The present study involved hydraulic model experiments conducted in a laboratory to investigate the surrounding flow patterns according to the river bed slope at the downstream part of the weir model. Further, the scour characteristics in the apron section during the overflow of the structure were analyzed to determine the appropriateness of the apron length. Thus, as the upstream river bed slope gradually increased, the experimental scour length deviated more from the design criteria formula. The results suggest that both the formula suggested by the National Construction Research Institute and Bligh’s formula presented in the River Design Criteria are not suitable for steep-slope rivers, such as small rivers in Korea, because both formulas were proposed based on the seepage line distance and river bed materials without considering the slope of the river bed. Thus, in designing the apron and bed pitching of weirs and drop structures, the river bed slope, scour characteristics of weir overflow, and existing design factors should be comprehensively considered to devise a design formula appropriate for environment of the small rivers in Korea.展开更多
Local scour downstream of sluice gates in erosive beds is one of the main concerns of hydraulic engineers because it can cause considerable damage to structures.Many researchers have conducted various studies to predi...Local scour downstream of sluice gates in erosive beds is one of the main concerns of hydraulic engineers because it can cause considerable damage to structures.Many researchers have conducted various studies to predict the maximum depth and length of scour holes and to develop new methods to control this phenomenon.In the methods that have recently been examined,embedded buried plates are used to control the scour in the erosive beds.In this study,using a physical model,the effect of buried plates in erosive beds on the depth of scour downstream of a hydraulic jump was studied.Several experiments were performed in which plates were buried at 50° and 90° angles at different distances from the apron in open channels with horizontal and reverse bed slopes.The results of experiments in which the scour profiles were drawn in dimensionless forms show that the angle and position of the plates are important to controlling and reducing scour depth.In fact,by reducing the angle of buried plates,the maximum depth of scour is also reduced.Also,comparison of the results of a single buried plate and double buried plates shows that using two buried plates at the distances of 30 and 45 cm from the non-erodible bed is more effective in reducing the scour depth.The best distances of the buried plates with angles of 90° and 50° from the non-erodible bed are 45 cm and 30 cm,respectively,in the condition with a single buried plate.展开更多
The river reach downstream of a floodgate at the estuary of the Xinyihe River is about 1.3km long, and the riverbed is composed of clotty clay. In the experiment, soil samples are taken from the construction site, and...The river reach downstream of a floodgate at the estuary of the Xinyihe River is about 1.3km long, and the riverbed is composed of clotty clay. In the experiment, soil samples are taken from the construction site, and the incipient velocity is determined in a laboratory flume, and it is used to design the scour model and to select model sand material. The experimental results show that scours below the floodgate is unavoidable due to large discharge and Low tidal level. Scours is caused by two factors: the rapid flow passing though the floodgate and the water drop near the river mouth during low ride, and the scout below the floodgate is more critical to the structural design. It is suggested that anti-scour walls should be used instead of riprap. The ideas and methods adopted in the experiment can be used as reference in the study on river scout under similar conditions.展开更多
Flood damage has aggravated recently owing to artificial structures in high flow rare areas such as small rivers, which can lead to secondary damage. In this regard, studies are required to examine the conventional de...Flood damage has aggravated recently owing to artificial structures in high flow rare areas such as small rivers, which can lead to secondary damage. In this regard, studies are required to examine the conventional design criteria formulas to secure the stability of structures such as weirs and drop structures. Although studies on the stability of these structures have been conducted through small-scale experiments, few empirical studies have investigated the hydraulic phenomena occurring near actual artificial structures. In this study, we fabricated real-size models of weir and drop structure at the Andong River Experiment Center and investigated the flow patterns around the structures by applying the particle image velocimetry analysis technique with a flow tracker. We also measured the scour length in the waterspout section when the structures are overflowing, and compared it with the values calculated using the formula. Consequently, as the supply flow increases, the result is different from the value calculated using the formula given in the existing design standard, and it is judged to be inappropriate for a small stream area with high flow rate. Thus, it is necessary to consider the design factors such as energy gradient and the flow amount per unit width into weir and drop structure as well as the existing design factors in designing an apron section for a weir and drop structure.展开更多
The causes of local scour are generally categorized into flow condition, structure, and riverbed material. A three-dimensional vortex flow generated with the influence of the structure is the main factors of the flow ...The causes of local scour are generally categorized into flow condition, structure, and riverbed material. A three-dimensional vortex flow generated with the influence of the structure is the main factors of the flow conditions, and the size of the particles is assumed to be the main factor of the riverbed case. Various studies about pier local scour have been carried out by researchers since the 1960s, and a large number of experimental formulas have been suggested. Difficulties were encountered by these past studies, however, in terms of considering the influence of various riverbed materials and scour changes (floods, etc.) on time, with the condition of maximum scour depth. In the case of Korea, especially, scour influenced by various riverbed materials and the frequency of floods have been determined to be very important factors. Therefore, the ultimate purpose of this study on pier scour is to suggest the scour examination method that could consider various riverbed materials and the frequency of floods. In this study, the periodic changes in local scour based on the differences in the diameters of four types of bed materials, and on the hydraulic condition of the initial scour, were determined and compared with those in former studies. Using the results of the comparison, this study aims to determine the changes in the shear-stress around piers for various bed materials through the effect of time on scour depth (S, Smax), the shear-stress around piers, and the particles’ critical shear stress (τc).展开更多
Local scour downstream of the release structure is a critical problem to the safe and stable operation of water resources and hydropower engineering. In order to investigate the shape and depth of the scour hole under...Local scour downstream of the release structure is a critical problem to the safe and stable operation of water resources and hydropower engineering. In order to investigate the shape and depth of the scour hole under the equilibrium state of erosion and deposition downstream of an apron, a group of 16 experiments from the hydraulic similarity model test of Dangka Hydropower Station?was conducted with the non-cohesive sediment of different median particle sizes under different flow rates in this study. The control variable method was?to?study the influence of the flow rate and sediment size on the shape of the scour hole to define the number of experiment times of each test group. The results showed that the plane shape of the scour hole was irregular ellipse or semi-ellipse. The depth and size of the scour hole increased with the increase of the flow rate, and decreased with the increase of the sediment size;?the downstream longitudinal slope ratio of the scour hole increased with the increase of the sediment size. The coefficients of the upstream and downstream slope ratio of the local scour hole were 1/2 to 1/6 and about 1/10, respectively.展开更多
基金the Second Scientific Expedition to Qinghai-Tibet Plateau(Grant No.2019QZKK0902)the National Research and Development Program of China(Grant No.2020YFD1100701)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA23090403)。
文摘Check dams are the most commonly used engineering measure for debris flow control worldwide.The scour and siltation characteristics between dams are important factors affecting dam design.In this study,classical dimensional analysis of the variables that influence the development of gully bed scour and siltation was carried out.Flume experiments were conducted to examine the influence characteristics of opening width,flume slope,debris flow density,and opening rate on the characteristics of gully bed scour and siltation.The influential characteristics of variables on the dimensionless scour depth,scour length,siltation length,scour volume and siltation volume were obtained.The experiments showed that,with an increase in the relative opening from 1.5 to 2.5,scour depth increased by 7.4%,scour length decreased by 11.2%,siltation length increased by 22.0%,scour volume decreased by 4.7%and siltation volume increased by 22.0%.With an increase in flume gradient from 0.105 to 0.213,scour depth,siltation length and siltation volume increased by 40.0%,65.9%and 65.9%,respectively,and scour length decreased by 20.1%.With an increase in sediment concentration from 0.303 to 0.545,siltation length and siltation volume increased by 15.4%and 15.4%,respectively,and scour depth,scour length and scour volume decreased by 9.6%,9.1%and 17.8%,respectively.As opening rate increased from 0.08 to 0.32,siltation length and siltation volume increased by 33.3%and 33.3%,respectively,and scour depth,scour length and scour volume decreased by 5.4%,13.7%and 18.4%,respectively.The results showed that the flume gradient was the most influential factor on scour depth,scour length,siltation length and siltation volume,and the sediment concentration was the most influential factor on scour volume.Then,according to the experimental data,some empirical formulas predicting scour depth,scour length,siltation length,scour volume and siltation volume were obtained.The error between the computed values according to the formulas in this paper and the observed values was within±10%.These research results may provide a technological basis for window dam design in debris flow disaster prevention and mitigation.
基金support from the National Natural Science Foundation of China (Nos.52301324 and 52001276)the Natural Science Foundation of Zhejiang Province (No.LQ24E090001)+2 种基金the Open Fund of Key Laboratory of Estuary and Coast of Zhejiang Province (No.ZIHE21005)the Natural Science Foundation of Ningbo (No.2021J096)the Zhejiang Transportation Science and Technology (No.2021064)。
文摘Elucidating the flow features around piles in local scouring processes is crucial for studies of local scouring mechanisms and scour depth estimates.This study details the flow turbulence characteristics of two submerged piles that are determined by solving the Navier-Stokes equations with the improved delayed detached eddy simulation model.This model is verified by comparing experimental and numerical results for hydrodynamic parameters with the literature for both square-crossing piles(SCPs)and circular-crossing piles(CCPs).Original topographies of flat and scoured beds(i.e.,the initial and equilibrium scouring stages)are based on experimental results obtained by the authors in the present paper.SCP and CCP flow features in the scouring process are discussed.The results indicate that during the scouring process,the time-averaged drag coefficient and root mean square(rms)of the lift coefficient increase linearly in the CCP test,while the rms of the lift coefficient in the SCP test decreases linearly.Moreover,the minimum pressure coefficient is always located in the upstream corners in the SCP case but moves from 72.5°to 79.5°when the scour hole is completely developed in the CCP case.Downward flow behind the pile,which is generated by separated boundary layers above the top face of the pile,can reach the sand bed and turn the separated shear layers into patches of small vortices in the near-wake regions.Thus,the high shear stress zones are mainly at the scour edges under scoured-bed conditions.
基金supported by 973 Program (2008CB425803)the National Natural Science Foundation of China (Grant No. 50979064)
文摘Dambreak-induced bed scouring may undermine the foundation of bridge piers and other structures,and that destruction can pose a serious threat.Consequently,this paper aims at exploring the mechanisms of scouring and armoring.Firstly,the incipient velocity for nonuniform sediment particles was studied,and a formula was derived based on the angle of repose of nonuniform sediment.The results showed that the mechanism of incipient motion for sand and fine gravel differed from that for coarse gravel and cobbles.Also,comparison between experimental and field data shows that the results from the proposed formula agree well with those observed for all conditions.Secondly,a birth-death,immigration-emigration Markov process was developed to describe the bed load transport rate associated with scouring and armoring.The comparison between experimental data and computed results shows that our model can predict the bed load transport rate,although there may be some limitations,the chief of which is that there are many variables in the model to be determined through experiment.This makes its application in river engineering inconvenient.
文摘Flume experiments were carried out to study bed load transport rate during rive bed scouring and ar- moring.A theoretical differential equation linking the transport rate to the probability of incipient motion of non-uniform sediment is solved.The transport rate is shown to decrease exponentially with time,according to the theory,which is in good agreement with the experiment data.
文摘Various river projects are underway in small rivers in Korea that typically have natural flows. However, recent findings have shown that damages could be aggravated by structures such as weirs and drop structures during flood incidents. Experimental studies for securing the stability of flood control for these artificial structures have been insufficient, and designs applying the existing domestic design standards would not be suitable for the steep flow sections such as the actual small rivers, possibly aggravating the damages. The present study involved hydraulic model experiments conducted in a laboratory to investigate the surrounding flow patterns according to the river bed slope at the downstream part of the weir model. Further, the scour characteristics in the apron section during the overflow of the structure were analyzed to determine the appropriateness of the apron length. Thus, as the upstream river bed slope gradually increased, the experimental scour length deviated more from the design criteria formula. The results suggest that both the formula suggested by the National Construction Research Institute and Bligh’s formula presented in the River Design Criteria are not suitable for steep-slope rivers, such as small rivers in Korea, because both formulas were proposed based on the seepage line distance and river bed materials without considering the slope of the river bed. Thus, in designing the apron and bed pitching of weirs and drop structures, the river bed slope, scour characteristics of weir overflow, and existing design factors should be comprehensively considered to devise a design formula appropriate for environment of the small rivers in Korea.
文摘Local scour downstream of sluice gates in erosive beds is one of the main concerns of hydraulic engineers because it can cause considerable damage to structures.Many researchers have conducted various studies to predict the maximum depth and length of scour holes and to develop new methods to control this phenomenon.In the methods that have recently been examined,embedded buried plates are used to control the scour in the erosive beds.In this study,using a physical model,the effect of buried plates in erosive beds on the depth of scour downstream of a hydraulic jump was studied.Several experiments were performed in which plates were buried at 50° and 90° angles at different distances from the apron in open channels with horizontal and reverse bed slopes.The results of experiments in which the scour profiles were drawn in dimensionless forms show that the angle and position of the plates are important to controlling and reducing scour depth.In fact,by reducing the angle of buried plates,the maximum depth of scour is also reduced.Also,comparison of the results of a single buried plate and double buried plates shows that using two buried plates at the distances of 30 and 45 cm from the non-erodible bed is more effective in reducing the scour depth.The best distances of the buried plates with angles of 90° and 50° from the non-erodible bed are 45 cm and 30 cm,respectively,in the condition with a single buried plate.
文摘The river reach downstream of a floodgate at the estuary of the Xinyihe River is about 1.3km long, and the riverbed is composed of clotty clay. In the experiment, soil samples are taken from the construction site, and the incipient velocity is determined in a laboratory flume, and it is used to design the scour model and to select model sand material. The experimental results show that scours below the floodgate is unavoidable due to large discharge and Low tidal level. Scours is caused by two factors: the rapid flow passing though the floodgate and the water drop near the river mouth during low ride, and the scout below the floodgate is more critical to the structural design. It is suggested that anti-scour walls should be used instead of riprap. The ideas and methods adopted in the experiment can be used as reference in the study on river scout under similar conditions.
文摘Flood damage has aggravated recently owing to artificial structures in high flow rare areas such as small rivers, which can lead to secondary damage. In this regard, studies are required to examine the conventional design criteria formulas to secure the stability of structures such as weirs and drop structures. Although studies on the stability of these structures have been conducted through small-scale experiments, few empirical studies have investigated the hydraulic phenomena occurring near actual artificial structures. In this study, we fabricated real-size models of weir and drop structure at the Andong River Experiment Center and investigated the flow patterns around the structures by applying the particle image velocimetry analysis technique with a flow tracker. We also measured the scour length in the waterspout section when the structures are overflowing, and compared it with the values calculated using the formula. Consequently, as the supply flow increases, the result is different from the value calculated using the formula given in the existing design standard, and it is judged to be inappropriate for a small stream area with high flow rate. Thus, it is necessary to consider the design factors such as energy gradient and the flow amount per unit width into weir and drop structure as well as the existing design factors in designing an apron section for a weir and drop structure.
文摘The causes of local scour are generally categorized into flow condition, structure, and riverbed material. A three-dimensional vortex flow generated with the influence of the structure is the main factors of the flow conditions, and the size of the particles is assumed to be the main factor of the riverbed case. Various studies about pier local scour have been carried out by researchers since the 1960s, and a large number of experimental formulas have been suggested. Difficulties were encountered by these past studies, however, in terms of considering the influence of various riverbed materials and scour changes (floods, etc.) on time, with the condition of maximum scour depth. In the case of Korea, especially, scour influenced by various riverbed materials and the frequency of floods have been determined to be very important factors. Therefore, the ultimate purpose of this study on pier scour is to suggest the scour examination method that could consider various riverbed materials and the frequency of floods. In this study, the periodic changes in local scour based on the differences in the diameters of four types of bed materials, and on the hydraulic condition of the initial scour, were determined and compared with those in former studies. Using the results of the comparison, this study aims to determine the changes in the shear-stress around piers for various bed materials through the effect of time on scour depth (S, Smax), the shear-stress around piers, and the particles’ critical shear stress (τc).
文摘Local scour downstream of the release structure is a critical problem to the safe and stable operation of water resources and hydropower engineering. In order to investigate the shape and depth of the scour hole under the equilibrium state of erosion and deposition downstream of an apron, a group of 16 experiments from the hydraulic similarity model test of Dangka Hydropower Station?was conducted with the non-cohesive sediment of different median particle sizes under different flow rates in this study. The control variable method was?to?study the influence of the flow rate and sediment size on the shape of the scour hole to define the number of experiment times of each test group. The results showed that the plane shape of the scour hole was irregular ellipse or semi-ellipse. The depth and size of the scour hole increased with the increase of the flow rate, and decreased with the increase of the sediment size;?the downstream longitudinal slope ratio of the scour hole increased with the increase of the sediment size. The coefficients of the upstream and downstream slope ratio of the local scour hole were 1/2 to 1/6 and about 1/10, respectively.