Mangroves play a pivotal role in tropical and subtropical coastal ecosystem,yet they are highly vulnerable to the effects of climate change,particularly the accelerated global sea level rise(SLR)and stronger tropical ...Mangroves play a pivotal role in tropical and subtropical coastal ecosystem,yet they are highly vulnerable to the effects of climate change,particularly the accelerated global sea level rise(SLR)and stronger tropical cyclones(TCs).However,there is a lack of research addressing future simultaneous combined impacts of the slow-onset of SLR and rapid-onset of TCs on China's mangroves.In order to develop a comprehensive risk assessment method considering the superimposed effects of these two factors and analyze risk for mangroves in Dongzhaigang,Hainan Island,China,we used observational and climate model data to assess the risks to mangroves under low,intermediate,and very high greenhouse gas(GHG)emission scenarios(such as SSP1-2.6,SSP2-4.5,and SSP5-8.5)in 2030,2050,and 2100,and compiled a risk assessment scheme for mangroves in Dongzhaigang,China.The results showed that the combined risks from SLR and TCs will continue to rise;however,SLRs will increase in intensity,and TCs will decrease.The comprehensive risk of the Dongzhaigang mangroves posed by climate change will remain low under SSP1-2.6 and SSP2-4.5 scenarios by 2030,but it will increase substantially by 2100.While under SSP5-8.5 scenario,the risks to mangroves in Dongzhaigang are projected to increase considerably by 2050,and approximately 68.8%of mangroves will be at very high risk by 2100.The risk to the Dongzhaigang mangroves is not only influenced by the hazards but also closely linked to their exposure and vulnerability.We therefore propose climate resilience developmental responses for mangroves to address the effects of climate change.This study for the combined impact of TCs and SLR on mangroves in Dongzhaigang,China can enrich the method system of mangrove risk assessment and provide references for scientific management.展开更多
As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the trans...As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the transportation infrastructure. Many people living in low elevation coastal areas can become trapped by flooding with no way in or out. With Delaware being a coastal state, this would affect a large portion of the population and will have detrimental effects over time if nothing is done to combat sea level rise. The issue with sea level rise in transportation is that once the roads become flooded, they become virtually unusable and detour routes would be needed. If all the roads in a coastal area were to be affected by sea level rise, the options for detours would become limited. This article looks at direct solutions to combat sea level rise and indirect solutions that would specifically help transportation infrastructure and evacuation routes in Delaware. There is not one solution that can fix every problem, so many solutions are laid out to see what is applicable to each affected area. Some solutions include defense structures that would be put close to the coast, raising the elevation of vulnerable roads throughout the state and including pumping stations to drain the water on the surface of the road. With an understanding of all these solutions around the world, the ultimate conclusion came in the form of a six-step plan that Delaware should take in order to best design against sea level rise in these coastal areas.展开更多
Reservoirs provide a variety of services with economic values across multiple sectors. As demands for reservoir services continue to grow and precipitation patterns evolve, it becomes ever more important to consider t...Reservoirs provide a variety of services with economic values across multiple sectors. As demands for reservoir services continue to grow and precipitation patterns evolve, it becomes ever more important to consider the integrated suite of values and tradeoffs that attend changes in water uses and availability. Section 316 (b) of the Clean Water Act requires that owners of certain water cooled power plants evaluate technologies and operational measures that can reduce their impacts to aquatic organisms. The studies must discuss the social costs and benefits of alternative technologies including cooling towers (79 Fed. Reg. 158, 48300 - 48439). Cooling towers achieve their effect through evaporation. This manuscript estimates the property value, recreation, and hydroelectric generation impacts that could result from the evaporative water loss associated with installing cooling towers at the McGuire Nuclear Generating Station (McGuire) located on Lake Norman, North Carolina. Although this study specifically evaluates the effects of evaporative water loss from cooling towers, its methods are applicable to estimating the economic benefits and costs of a new water user or reduced water input in any complex reservoir system that supports steam electric generation, hydroelectric generation, residential properties, recreation, irrigation, and municipal water use.展开更多
The construction of dams for intercepting and storing water has altered surface water distributions, landsea water exchanges, and the load response of the solid Earth. The lack of accurate estimation of reservoir prop...The construction of dams for intercepting and storing water has altered surface water distributions, landsea water exchanges, and the load response of the solid Earth. The lack of accurate estimation of reservoir properties through the land surface and hydrological models can lead to water storage simulation and extraction errors. This impact is particularly evident in many artificial reservoirs in China. The study aims to comprehensively assess the spatiotemporal distribution and trends of water storage in medium and large reservoirs(MLRs) in Chinese mainland during 1950-2016, and to investigate the gravity,displacement, and strain effects induced by the reservoir mass concentration using the load elasticity theory. In addition, the impoundment contributions of MLRs to the relative sea level changes were assessed using a sea-level equation. The results show impoundment increases in the MLRs during1950-2016, particularly in the Yangtze River(Changjiang) and southern basins, causing significant elastic load effects in the surrounding areas of the reservoirs and increasing the relative sea level in China's offshore. However, long-term groundwater estimation trends are overestimated and underestimated in the Yangtze River and southwestern basins, respectively, due to the neglect of the MLRs impacts or the uncertainty of the hydrological model's output(e.g., soil moisture, etc.). The construction of MLRs may reduce the water mass input from land to the ocean, thus slowing global sea level rise. The results of the impact of human activities on the regional water cycle provide important references and data support for improving the integration of hydrological models, evaluating Earth's viscoelastic responses under longterm reservoir storage, enhancing in-situ and satellite geodetic measurements, and identifying the main factors driving sea level changes.展开更多
With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slop...With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slope which is located on the left bank of the Jinsha River 75 km upstream of the Xiluodu dam site,began to deform in 2014.The potential failure of the slope not only threatens Yanjiao town but also affects the safe operation of the Xiluodu reservoir.This paper is to find the factors influencing the Yanjiao slope deformation through field investigation,geotechnical reconnaissance,and monitoring.Results show that the Yanjiao slope can be divided into a bank collapse area(BCA)and a strong deformation area(SDA)based on the crack distribution characteristics of the slope.The rear area of the slope has been experiencing persistent deformation with a maximum cumulative displacement(GPS monitoring point G4)of 505 mm and 399 mm in the horizontal and vertical directions,respectively.The potential failure surface of the slope is formed 36 m below the surface based on the borehole inclinometer.The bank collapses of the Yanjiao slope are directly caused by the reservoir impoundment while the deformation area of the slope is affected by the combination of the rainfall and reservoir water level fluctuation.Based on mechanism of the Yanjiao slope,prestressed anchor combined with the surface drainage and slope unloading are recommended to prevent potential deformation.展开更多
The effective recovery of water level is a crucial measure of the success of comprehensive groundwater over-exploitation management actions in North China.However,traditional evaluation method do not directly capture ...The effective recovery of water level is a crucial measure of the success of comprehensive groundwater over-exploitation management actions in North China.However,traditional evaluation method do not directly capture the relationship between mining and other equilibrium elements.This study presents an innovative evaluation method to assess the water level recovery resulting from mining reduction based on the relationship between variation in exploitation and recharge.Firstly,the recharge variability of source and sink terms for both the base year and evaluation year is calculated and the coefficient of recharge variationβis introduced,which is then used to calculate the effective mining reduction and solve the water level recovery value caused by the effective mining reduction,and finally the water level recovery contribution by mining reduction is calculated by combining with the actual volume of mining reduction in the evaluation area.This research focuses on Baoding and Shijiazhuang Plain area,which share similar hydrogeological conditions but vary in groundwater exploitation and utilization.As the effect of groundwater level recovery with mining reduction was evaluated in these two areas as case study.In 2018,the results showed an effective water level recovery of 0.17 m and 0.13 m in the shallow groundwater of Shijiazhuang and Baoding Plain areas,respectively.The contributions of recovery from mining reduction were 76%and 57.98%for these two areas,respectively.It was notable that the water level recovery was most prominent in the foothill plain regions.From the evaluation results,it is evident that water level recovery depends not only on the intensity of groundwater mining reduction,but also on its effectiveness.The value of water level recovery alone cannot accurately indicate the intensity of mining reduction,as recharge variation significantly influences water level changes.Therefore,in practice,it is crucial to comprehensively assess the impact of mining reduction on water level recovery by combining the coefficient of recharge variation with the contribution of water level recovery from mining reduction.This integrated approach provide a more reasonable and scientifically supported basis,offering essential data support for groundwater management and conservation.To improve the accuracy and reliability of evaluation results,future work will focus on the standardizing and normalizing raw data processing.展开更多
Groundwater is a crucial sources of water supply,especially in arid and semi-arid areas around the world.With uncontrolled withdrawals and limited availability of these resources,it is essential to determine the safe ...Groundwater is a crucial sources of water supply,especially in arid and semi-arid areas around the world.With uncontrolled withdrawals and limited availability of these resources,it is essential to determine the safe yield of these valuable resources.The Hill method approach was used in this study to determine the safe yield the Neishabour aquifer in Khorasan Razvi province in Iran.The results showed that the safe yield in the Neishabour aquifer is 60%lower than the current pumping amounts during the study period,indicating that further overdrafts could result in the destruction of this aquifer.This highlights the importance of using the Hill method to estimate the permitted exploitation from other aquifers,thus preventing problems caused by over-extraction and maintaining stability of global groundwater levels.展开更多
Mangrove distribution along shorelines shows distinct zonation patterns;thus,different communities may face various influences from sea level rise(SLR)and land use.However,long-term change predictions are usually base...Mangrove distribution along shorelines shows distinct zonation patterns;thus,different communities may face various influences from sea level rise(SLR)and land use.However,long-term change predictions are usually based only on the total extent of mangroves.Few studies have revealed how SLR and land development such as agriculture,aquaculture,and urbanization jointly affect different intertidal mangrove communities.This study proposed a novel framework combining SLAMM(Sea Level Affecting Marshes Model)and the CLUE-S(Conversion of Land Use and its Effect at Small regional extent)model to assess the potential impacts on upper and lower intertidal mangrove communities.Maoweihai in Guangxi,China,was selected as the study area and the potential impacts from the squeeze effect and mangrove expansion potential were evaluated.We established three scenarios combining SLR and land use patterns to predict mangrove coverage projections by 2070.The results showed that,under a single SLR driver,the upper intertidal mangroves would be more adaptive to rapid SLR than the lower intertidal mangroves.However,under the combined influence of the two drivers,the upper intertidal mangroves would experience larger squeeze effects than the lower intertidal mangroves,with up to 80.5%of suitable habitat lost.Moreover,the expansion potential of upper intertidal mangroves would be considerably more limited than that of lower intertidal mangroves.The length of the expandable habitat patch boundary of upper intertidal mangroves only reached 1.4–1.8 km,while that of the lower intertidal mangroves reached up to99.2–111.2 km.Further,we found that aquaculture ponds and cropland are the top two land development types that could occupy suitable habitat and restrict the mangrove expansion potential.Our results highlight that timely improvement of land use policies to create available landward accommodation space for mangrove migration is essential to maintain the coverage and diversity of mangrove communities under SLR.The proposed method can be a helpful tool for adaptive mangrove conservation and management under climate change.展开更多
Mangrove forests are under the stress of sea level rise(SLR)which would affect mangrove soil biogeochemistry.Mangrove soils are important sources of soil-atmosphere greenhouse gas(GHG)emissions,including carbon dioxid...Mangrove forests are under the stress of sea level rise(SLR)which would affect mangrove soil biogeochemistry.Mangrove soils are important sources of soil-atmosphere greenhouse gas(GHG)emissions,including carbon dioxide(CO_(2)),methane(CH_(4))and nitrous oxide(N_(2)O).Understanding how SLR influences GHG emissions is critical for evaluating mangrove blue carbon capability.In this study,potential effects of SLR on the GHG emissions were quantified through static closed chamber technique among three sites under different intertidal elevations,representing tidal flooding situation of SLR values of 0 cm,40 cm and 80 cm,respectively.Compared with Site SLR 0 cm,annual CO_(2) and N_(2)O fluxes decreased by approximately 75.0%and 27.3%due to higher soil water content,lower salinity and soil nutrient environments at Site SLR 80 cm.However,CH_(4) fluxes increased by approximately 13.7%at Site SLR 40 cm and 8.8%at Site SLR 80 cm because of lower salinity,higher soil water content and soil pH.CO_(2)-equivalent fluxes were 396.61 g/(m^(2)·a),1423.29 g/(m^(2)·a)and 1420.21 g/(m^(2)·a)at Sites SLR 80 cm,SLR 40 cm and SLR 0 cm,respectively.From Site SLR 0 cm to Site SLR 80 cm,contribution rate of N_(2)O and CH_(4) increased by approximately 7.42%and 3.02%,while contribution rate of CO_(2) decreased by approximately 10.44%.The results indicated that warming potential of trace CH_(4) and N_(2)O was non-negligible with SLR.Potential effects of SLR on the mangrove blue carbon capability should warrant attention due to changes of all three greenhouse gas fluxes with SLR.展开更多
Nowadays, the deep learning methods are widely applied to analyze and predict the trend of various disaster events and offer the alternatives to make the appropriate decisions. These support the water resource managem...Nowadays, the deep learning methods are widely applied to analyze and predict the trend of various disaster events and offer the alternatives to make the appropriate decisions. These support the water resource management and the short-term planning. In this paper, the water levels of the Pattani River in the Southern of Thailand have been predicted every hour of 7 days forecast. Time Series Transformer and Linear Regression were applied in this work. The results of both were the water levels forecast that had the high accuracy. Moreover, the water levels forecasting dashboard was developed for using to monitor the water levels at the Pattani River as well.展开更多
Bangladesh is vulnerable to climate change-induced sea level rise due to its location and socioeconomic position. The study examines the Beel Kapalia region in polder no. 24 of the Monirampur upazila of Jessore distri...Bangladesh is vulnerable to climate change-induced sea level rise due to its location and socioeconomic position. The study examines the Beel Kapalia region in polder no. 24 of the Monirampur upazila of Jessore district, Khulna division. To assess local attitudes on sea level rise-related permanent flooding, Kapalia, Monoharpur, Nehalpur, Balidaha, and Panchakori were polled. This flooding has disrupted residents’ lifestyles, making them vulnerable to increasing sea levels. Viability and adaptability were assessed using livelihood capitals. Participants’ thoughts and knowledge about their resilience in several livelihood factors were gathered using participatory rural appraisal (PRA) instruments and a questionnaire survey in the area. Major discoveries include the impact of permanent floods on Beel Kapalia’s livelihoods, vulnerability and resilience assessments in numerous villages, and community viewpoints on regional adaptation methods to mitigate these consequences. The study found that a sustained 30.5 cm inundation would reduce local human, natural, physical, financial, and social capital resilience to 69.6%, 30.7%, 69.1%, 68.9%, and 69.1%. A constant 61 cm inundation would lower resistance to 40.9%, 8.7%, 42.4%, 45.6%, and 43.8%. Residents believe they can weather a 30.5 cm inundation with local adaptation measures, but if the water level rises to 61 cm, they may be displaced.展开更多
The Yangtze River Basin’s water resource utilization efficiency(WUE)and scientific and technological innovation level(STI)are closely connected,and the comprehension of these relationships will help to improve WUE an...The Yangtze River Basin’s water resource utilization efficiency(WUE)and scientific and technological innovation level(STI)are closely connected,and the comprehension of these relationships will help to improve WUE and promote local economic growth and conservation of water.This study uses 19 provinces and regions along the Yangtze River’s mainstream from 2009 to 2019 as its research objects and uses a Vector Auto Regression(VAR)model to quantitatively evaluate the spatiotemporal evolution of the coupling coordination degree(CCD)between the two subsystems of WUE and STI.The findings show that:(1)Both the WUE and STI in the Yangtze River Basin showed an upward trend during the study period,but the STI effectively lagged behind the WUE;(2)The CCD of the two subsystems generally showed an upward trend,and the CCD of each province was improved to varying degrees,but the majority of regions did not develop a high-quality coordination stage;(3)The CCD of the two systems displayed apparent positive spatial autocorrelation in the spatial correlation pattern,and there were only two types:high-high(H-H)urbanization areas and low-low(L-L)urbanization areas;(4)The STI showed no obvious response to the impact of the WUE,while the WUE responded greatly to the STI,and both of them were highly dependent on themselves.Optimizing their interaction mechanisms should be the primary focus of high-quality development in the basin of the Yangtze River in the future.These results give the government an empirical basis to enhance the WUE and promote regional sustainable development.展开更多
The two main factors contributing to depletion of freshwater resources are climate change and anthropological variables. This study presents statistical analyses that are local in its specifics yet global in its relev...The two main factors contributing to depletion of freshwater resources are climate change and anthropological variables. This study presents statistical analyses that are local in its specifics yet global in its relevance. The decline in Gulf Coast aquifer water quality and quantity has been alarming especially with the increased demand on fresh water in neighboring non-coastal communities. This study used seawater levels, groundwater use, and well data to investigate the association of these factors on the salinity of water indicated by chloride levels. Statistical analyses were conducted pointing to the high significance of both sea water level and groundwater withdrawals to chloride concentrations. However, groundwater withdrawal had higher significance which points to the need of water management systems in order to limit groundwater use. The findings also point to the great impact of increased groundwater salinity in the Gulf Coast aquifer on agriculture and socioeconomic status of coastal communities. The high costs of desalinization point to the increased signification of water rerouting and groundwater management systems. Further investigation and actions are in dire need to manage these vulnerabilities of the coastal communities.展开更多
As a worldwide authoritative, IPCC forecasted in 1990 that the world- s sea level would most probably rise by 0. 66 m by the end of the 21 st century. Combined with the local depression caused by the sink of the earth...As a worldwide authoritative, IPCC forecasted in 1990 that the world- s sea level would most probably rise by 0. 66 m by the end of the 21 st century. Combined with the local depression caused by the sink of the earth’s crust and the human activity, the relative sea level in the Chanaiiang River mouth will rise by about 1. 0 m during the same peried. Based on this figure, the article forecasted the impacts of sea-level rise on the safety coefficient of coastal structures and civil facilities, loss of wetlands, flood hazard as well as water intrusion. The results show that: 1 ) 40% as large as the present engil1eering mass should be added to the coastal structures in order to maintain the safety coefficient; 2 ) a dynamic loss of 60 km2 of wetlands, as much as 15% of the present total area, would be caused; 3) to hinder the increase inflood hazard dy11amic capacity to drain water must increase by at least 34 times as large as the present; 4) to maintain the present navigation conditions, about 100 million yuan (RMB) is needed to reconstruct over 30(X) bridges and 30 sluices;and 5 ) the disastrous salt water intrusion caused by the sea-level rise could be encountered by the increase in water discharge from the Three Gorge Reservoir in the dry season.展开更多
Global temperature is predicted to increase in the end of the century and one of the primary consequences of this warming is the sea level rise. Considering the vulnerabilities on coastal systems and water resources, ...Global temperature is predicted to increase in the end of the century and one of the primary consequences of this warming is the sea level rise. Considering the vulnerabilities on coastal systems and water resources, it is important to evaluate the potential effects of this rising in coastal areas, since the saline intrusion on rivers would be intensified, leading to problems related to water quality. In this context, the present work aimed to verify saline intrusion changes along an important river, São Francisco Canal, located in Rio de Janeiro State, Brazil. For this purpose, a hydrodynamic modeling was performed using SisBaHiA, considering different sea levels and tide conditions. According to the results, it was verified the intensification on saline intrusion and higher salinity values due to a sea level rise of 0.5 m. These results show that new licenses for water withdrawals must be carefully analyzed as the fluvial flow plays an important role to contain the saltwater intrusion on the studied river. Accordingly, it is recommended the evaluation of climate change effects in order to choose best strategies to reduce coastal vulnerability, and the use of this theme on environmental licensing and territorial planning, integrating water planning with coastal management.展开更多
Lixiahe region is one of the susceptible area to flood and waterlogging disasters in China due to its low topographic relief and having difficulty in draining floodwater away.The condition will be more serious if sea ...Lixiahe region is one of the susceptible area to flood and waterlogging disasters in China due to its low topographic relief and having difficulty in draining floodwater away.The condition will be more serious if sea level rises in the future.The estimated results by some scientists indicate that the sea level could rise probably 20-100 cm by 2050.However,what the effect will future sea level rise exerts on flood drainage and on flood or waterlogging disasters? A hydrological system model has been developed to study the problem in the lower reaches of the Sheyang River basin.Predicted results from the model show that,if sea level rises,drainage capacity of each drainage river will decrease obviously,and the water level will also rise.From the change of drainage capacity of drainage rivers the trends of flood and waterlogging disasters are analyzed in the paper if the severe flood that happened in the past meets with future sea level rise.Some countermeasures for disaster reduction and prevention against sea-level rise are put forward.展开更多
Against a background of climate change, Macao is very exposed to sea level rise (SLR) because of its low elevation, small size, and ongoing land reclamation. Therefore, we evaluate sea level changes in Macao, both h...Against a background of climate change, Macao is very exposed to sea level rise (SLR) because of its low elevation, small size, and ongoing land reclamation. Therefore, we evaluate sea level changes in Macao, both historical and, especially, possible future scenarios, aiming to provide knowledge and a framework to help accommodate and protect against future SLR. Sea level in Macao is now rising at an accelerated rate: 1.35 mm yr-1 over 1925-2010 and jumping to 4.2 mm yr I over 1970-2010, which outpaces the rise in global mean sea level. In addition, vertical land movement in Macao contributes little to local sea level change. In the future, the rate of SLR in Macao will be about 20% higher than the global average, as a consequence of a greater local warming tendency and strengthened northward winds. Specifically, the sea level is projected to rise 8-12, 22-51 and 35-118 cm by 2020, 2060 and 2100, respectively, depending on the emissions scenario and climate sensitivity. Under the --8.5 W m 2 Representative Concentration Pathway (RCP8.5) scenario the increase in sea level by 2100 will reach 65 118 cm--double that under RCP2.6. Moreover, the SLR will accelerate under RCP6.0 and RCP8.5, while remaining at a moderate and steady rate under RCP4.5 and RCP2.6. The key source of uncertainty stems from the emissions scenario and climate sensitivity, among which the discrepancies in SLR are small during the first half of the 21st century but begin to diverge thereafter.展开更多
Coseismic water level changes which may have been induced by the Wenchuan Ms8.0 earthquake and its 15 larger aftershocks (Ms〉5.4) have been observed at Tangshan well. We analyze the correlation between coseismic pa...Coseismic water level changes which may have been induced by the Wenchuan Ms8.0 earthquake and its 15 larger aftershocks (Ms〉5.4) have been observed at Tangshan well. We analyze the correlation between coseismic parameters (maximum amplitude, duration, coseismic step and the time when the coseismic reach its maximum amplitude) and earthquake parameters (magnitude, well-epicenter distance and depth), and then compare the time when the coseismic oscillation reaches its maximum amplitude with the seismogram from Douhe seismic station which is about 16.3 km away from Tangshan well. The analysis indicates that magnitude is the main factor influencing the induced coseismic water level changes, and that the well-epicenter distance and depth have less influence. Ms magnitude has the strongest correlation with the coseismic water level changes comparing to Mw and ML magnitudes. There exists strong correlation between the maximum amplitude, step size and the oscillation duration. The water level oscillation and step are both caused by dynamic strain sourcing from seismic waves. Most of the times when the oscillations reach their maximum amplitudes are between S and Rayleigh waves. The coseismic water level changes are due to the co-effect of seismic waves and hydro-geological environments.展开更多
A nonlinear two-dimension dynamic model of storm surge (SS) and astronomical tide(AT) was used to investigate the effects of SS and AT on expected sea level rise (SLR) at principalcoastal stations in the Shanghai regi...A nonlinear two-dimension dynamic model of storm surge (SS) and astronomical tide(AT) was used to investigate the effects of SS and AT on expected sea level rise (SLR) at principalcoastal stations in the Shanghai region and to estimate numerically the probable maximum water lerel for2010 - 2050. Evidence suggests tha SLR causes reduction of SS; that its influence on SS depends on theintensity and path of a tropical cyclone and the station locality; tha the SLR’s effects on AT vary periodi-cally, with the peried being the same as tha of the AT’s: and that as the SLR increment grows, its impactincreases; below mean sea level (MSL) the effect is positive at rising tide and negative at ebb tide, andvice versa for the effect above MSL. Study of the probable maximum water level (by assuming SLR, SSalong favorable tropical cyclone’s path, its possible maximum intensity and effectivee spring AT at a rangeof set paths of Cyclones 5612, 8114, 9417) showed that the probable maximum water level is 740, 745,and 751 cm in the years 2010, 2030, and 2050, respetively, over the target region.展开更多
The results presented in this paper are a part of the research results of the thesis "research on scientific basis and practice of develop a system of monitoring the impacts of climate change on surface water and gro...The results presented in this paper are a part of the research results of the thesis "research on scientific basis and practice of develop a system of monitoring the impacts of climate change on surface water and groundwater". Case study: Ma river basin in Vietnam. The results were implemented: (i) data collection, fieldwork survey, synthesis and analysis of information and data; (ii) partitioning the influence degree of climate change and sea level rise to groundwater; (iii) determining criteria to select monitoring routes, location of monitoring groundwater in the condition of climate change and sea level rise and (iv) developing the monitoring system. The research's results have practical implications for the water resources management in the context of climate change and sea level rise in Ma river basin.展开更多
基金Under the auspices of the National Key Research and Development Program of China (No.2017YFA0604902,2017YFA0604903,2017YFA0604901)。
文摘Mangroves play a pivotal role in tropical and subtropical coastal ecosystem,yet they are highly vulnerable to the effects of climate change,particularly the accelerated global sea level rise(SLR)and stronger tropical cyclones(TCs).However,there is a lack of research addressing future simultaneous combined impacts of the slow-onset of SLR and rapid-onset of TCs on China's mangroves.In order to develop a comprehensive risk assessment method considering the superimposed effects of these two factors and analyze risk for mangroves in Dongzhaigang,Hainan Island,China,we used observational and climate model data to assess the risks to mangroves under low,intermediate,and very high greenhouse gas(GHG)emission scenarios(such as SSP1-2.6,SSP2-4.5,and SSP5-8.5)in 2030,2050,and 2100,and compiled a risk assessment scheme for mangroves in Dongzhaigang,China.The results showed that the combined risks from SLR and TCs will continue to rise;however,SLRs will increase in intensity,and TCs will decrease.The comprehensive risk of the Dongzhaigang mangroves posed by climate change will remain low under SSP1-2.6 and SSP2-4.5 scenarios by 2030,but it will increase substantially by 2100.While under SSP5-8.5 scenario,the risks to mangroves in Dongzhaigang are projected to increase considerably by 2050,and approximately 68.8%of mangroves will be at very high risk by 2100.The risk to the Dongzhaigang mangroves is not only influenced by the hazards but also closely linked to their exposure and vulnerability.We therefore propose climate resilience developmental responses for mangroves to address the effects of climate change.This study for the combined impact of TCs and SLR on mangroves in Dongzhaigang,China can enrich the method system of mangrove risk assessment and provide references for scientific management.
文摘As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the transportation infrastructure. Many people living in low elevation coastal areas can become trapped by flooding with no way in or out. With Delaware being a coastal state, this would affect a large portion of the population and will have detrimental effects over time if nothing is done to combat sea level rise. The issue with sea level rise in transportation is that once the roads become flooded, they become virtually unusable and detour routes would be needed. If all the roads in a coastal area were to be affected by sea level rise, the options for detours would become limited. This article looks at direct solutions to combat sea level rise and indirect solutions that would specifically help transportation infrastructure and evacuation routes in Delaware. There is not one solution that can fix every problem, so many solutions are laid out to see what is applicable to each affected area. Some solutions include defense structures that would be put close to the coast, raising the elevation of vulnerable roads throughout the state and including pumping stations to drain the water on the surface of the road. With an understanding of all these solutions around the world, the ultimate conclusion came in the form of a six-step plan that Delaware should take in order to best design against sea level rise in these coastal areas.
文摘Reservoirs provide a variety of services with economic values across multiple sectors. As demands for reservoir services continue to grow and precipitation patterns evolve, it becomes ever more important to consider the integrated suite of values and tradeoffs that attend changes in water uses and availability. Section 316 (b) of the Clean Water Act requires that owners of certain water cooled power plants evaluate technologies and operational measures that can reduce their impacts to aquatic organisms. The studies must discuss the social costs and benefits of alternative technologies including cooling towers (79 Fed. Reg. 158, 48300 - 48439). Cooling towers achieve their effect through evaporation. This manuscript estimates the property value, recreation, and hydroelectric generation impacts that could result from the evaporative water loss associated with installing cooling towers at the McGuire Nuclear Generating Station (McGuire) located on Lake Norman, North Carolina. Although this study specifically evaluates the effects of evaporative water loss from cooling towers, its methods are applicable to estimating the economic benefits and costs of a new water user or reduced water input in any complex reservoir system that supports steam electric generation, hydroelectric generation, residential properties, recreation, irrigation, and municipal water use.
基金supported by the National Natural Science Foundation of China (No.42274110 and 42374106)long-term monitoring project in the Three Gorges Reservoir area (the National Natural Science Foundation of China,No.41874090 and 41504065)。
文摘The construction of dams for intercepting and storing water has altered surface water distributions, landsea water exchanges, and the load response of the solid Earth. The lack of accurate estimation of reservoir properties through the land surface and hydrological models can lead to water storage simulation and extraction errors. This impact is particularly evident in many artificial reservoirs in China. The study aims to comprehensively assess the spatiotemporal distribution and trends of water storage in medium and large reservoirs(MLRs) in Chinese mainland during 1950-2016, and to investigate the gravity,displacement, and strain effects induced by the reservoir mass concentration using the load elasticity theory. In addition, the impoundment contributions of MLRs to the relative sea level changes were assessed using a sea-level equation. The results show impoundment increases in the MLRs during1950-2016, particularly in the Yangtze River(Changjiang) and southern basins, causing significant elastic load effects in the surrounding areas of the reservoirs and increasing the relative sea level in China's offshore. However, long-term groundwater estimation trends are overestimated and underestimated in the Yangtze River and southwestern basins, respectively, due to the neglect of the MLRs impacts or the uncertainty of the hydrological model's output(e.g., soil moisture, etc.). The construction of MLRs may reduce the water mass input from land to the ocean, thus slowing global sea level rise. The results of the impact of human activities on the regional water cycle provide important references and data support for improving the integration of hydrological models, evaluating Earth's viscoelastic responses under longterm reservoir storage, enhancing in-situ and satellite geodetic measurements, and identifying the main factors driving sea level changes.
基金the project of POWERCHINA Chengdu Engineering Corporation Limited,Power China under Grant No.P46220the Natural Science Foundation of Sichuan,China under Grant No.2022NSFSC0425the Science and Technology Department of Sichuan Province under Grant No.2021YJ0053。
文摘With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slope which is located on the left bank of the Jinsha River 75 km upstream of the Xiluodu dam site,began to deform in 2014.The potential failure of the slope not only threatens Yanjiao town but also affects the safe operation of the Xiluodu reservoir.This paper is to find the factors influencing the Yanjiao slope deformation through field investigation,geotechnical reconnaissance,and monitoring.Results show that the Yanjiao slope can be divided into a bank collapse area(BCA)and a strong deformation area(SDA)based on the crack distribution characteristics of the slope.The rear area of the slope has been experiencing persistent deformation with a maximum cumulative displacement(GPS monitoring point G4)of 505 mm and 399 mm in the horizontal and vertical directions,respectively.The potential failure surface of the slope is formed 36 m below the surface based on the borehole inclinometer.The bank collapses of the Yanjiao slope are directly caused by the reservoir impoundment while the deformation area of the slope is affected by the combination of the rainfall and reservoir water level fluctuation.Based on mechanism of the Yanjiao slope,prestressed anchor combined with the surface drainage and slope unloading are recommended to prevent potential deformation.
基金supported by National Natural Science Foundation of China(41972262)Hebei Natural Science Foundation for Excellent Young Scholars(D2020504032).
文摘The effective recovery of water level is a crucial measure of the success of comprehensive groundwater over-exploitation management actions in North China.However,traditional evaluation method do not directly capture the relationship between mining and other equilibrium elements.This study presents an innovative evaluation method to assess the water level recovery resulting from mining reduction based on the relationship between variation in exploitation and recharge.Firstly,the recharge variability of source and sink terms for both the base year and evaluation year is calculated and the coefficient of recharge variationβis introduced,which is then used to calculate the effective mining reduction and solve the water level recovery value caused by the effective mining reduction,and finally the water level recovery contribution by mining reduction is calculated by combining with the actual volume of mining reduction in the evaluation area.This research focuses on Baoding and Shijiazhuang Plain area,which share similar hydrogeological conditions but vary in groundwater exploitation and utilization.As the effect of groundwater level recovery with mining reduction was evaluated in these two areas as case study.In 2018,the results showed an effective water level recovery of 0.17 m and 0.13 m in the shallow groundwater of Shijiazhuang and Baoding Plain areas,respectively.The contributions of recovery from mining reduction were 76%and 57.98%for these two areas,respectively.It was notable that the water level recovery was most prominent in the foothill plain regions.From the evaluation results,it is evident that water level recovery depends not only on the intensity of groundwater mining reduction,but also on its effectiveness.The value of water level recovery alone cannot accurately indicate the intensity of mining reduction,as recharge variation significantly influences water level changes.Therefore,in practice,it is crucial to comprehensively assess the impact of mining reduction on water level recovery by combining the coefficient of recharge variation with the contribution of water level recovery from mining reduction.This integrated approach provide a more reasonable and scientifically supported basis,offering essential data support for groundwater management and conservation.To improve the accuracy and reliability of evaluation results,future work will focus on the standardizing and normalizing raw data processing.
文摘Groundwater is a crucial sources of water supply,especially in arid and semi-arid areas around the world.With uncontrolled withdrawals and limited availability of these resources,it is essential to determine the safe yield of these valuable resources.The Hill method approach was used in this study to determine the safe yield the Neishabour aquifer in Khorasan Razvi province in Iran.The results showed that the safe yield in the Neishabour aquifer is 60%lower than the current pumping amounts during the study period,indicating that further overdrafts could result in the destruction of this aquifer.This highlights the importance of using the Hill method to estimate the permitted exploitation from other aquifers,thus preventing problems caused by over-extraction and maintaining stability of global groundwater levels.
基金financially supported by the National Key Research and Development Program of China(2022YFF0802204,2019YFE0124700)the Provincial Natural Science Foundation of Fujian(2020J05078)the National Natural Science Foundation of China(41906127 and 42076163)。
文摘Mangrove distribution along shorelines shows distinct zonation patterns;thus,different communities may face various influences from sea level rise(SLR)and land use.However,long-term change predictions are usually based only on the total extent of mangroves.Few studies have revealed how SLR and land development such as agriculture,aquaculture,and urbanization jointly affect different intertidal mangrove communities.This study proposed a novel framework combining SLAMM(Sea Level Affecting Marshes Model)and the CLUE-S(Conversion of Land Use and its Effect at Small regional extent)model to assess the potential impacts on upper and lower intertidal mangrove communities.Maoweihai in Guangxi,China,was selected as the study area and the potential impacts from the squeeze effect and mangrove expansion potential were evaluated.We established three scenarios combining SLR and land use patterns to predict mangrove coverage projections by 2070.The results showed that,under a single SLR driver,the upper intertidal mangroves would be more adaptive to rapid SLR than the lower intertidal mangroves.However,under the combined influence of the two drivers,the upper intertidal mangroves would experience larger squeeze effects than the lower intertidal mangroves,with up to 80.5%of suitable habitat lost.Moreover,the expansion potential of upper intertidal mangroves would be considerably more limited than that of lower intertidal mangroves.The length of the expandable habitat patch boundary of upper intertidal mangroves only reached 1.4–1.8 km,while that of the lower intertidal mangroves reached up to99.2–111.2 km.Further,we found that aquaculture ponds and cropland are the top two land development types that could occupy suitable habitat and restrict the mangrove expansion potential.Our results highlight that timely improvement of land use policies to create available landward accommodation space for mangrove migration is essential to maintain the coverage and diversity of mangrove communities under SLR.The proposed method can be a helpful tool for adaptive mangrove conservation and management under climate change.
基金The National Natural Science Foundation of China under contract Nos 42076142 and 41776097the Provincial Natural Science Foundation of Fujian under contract No.2020J06030the Fund of Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration under contract No.EPR2020003.
文摘Mangrove forests are under the stress of sea level rise(SLR)which would affect mangrove soil biogeochemistry.Mangrove soils are important sources of soil-atmosphere greenhouse gas(GHG)emissions,including carbon dioxide(CO_(2)),methane(CH_(4))and nitrous oxide(N_(2)O).Understanding how SLR influences GHG emissions is critical for evaluating mangrove blue carbon capability.In this study,potential effects of SLR on the GHG emissions were quantified through static closed chamber technique among three sites under different intertidal elevations,representing tidal flooding situation of SLR values of 0 cm,40 cm and 80 cm,respectively.Compared with Site SLR 0 cm,annual CO_(2) and N_(2)O fluxes decreased by approximately 75.0%and 27.3%due to higher soil water content,lower salinity and soil nutrient environments at Site SLR 80 cm.However,CH_(4) fluxes increased by approximately 13.7%at Site SLR 40 cm and 8.8%at Site SLR 80 cm because of lower salinity,higher soil water content and soil pH.CO_(2)-equivalent fluxes were 396.61 g/(m^(2)·a),1423.29 g/(m^(2)·a)and 1420.21 g/(m^(2)·a)at Sites SLR 80 cm,SLR 40 cm and SLR 0 cm,respectively.From Site SLR 0 cm to Site SLR 80 cm,contribution rate of N_(2)O and CH_(4) increased by approximately 7.42%and 3.02%,while contribution rate of CO_(2) decreased by approximately 10.44%.The results indicated that warming potential of trace CH_(4) and N_(2)O was non-negligible with SLR.Potential effects of SLR on the mangrove blue carbon capability should warrant attention due to changes of all three greenhouse gas fluxes with SLR.
文摘Nowadays, the deep learning methods are widely applied to analyze and predict the trend of various disaster events and offer the alternatives to make the appropriate decisions. These support the water resource management and the short-term planning. In this paper, the water levels of the Pattani River in the Southern of Thailand have been predicted every hour of 7 days forecast. Time Series Transformer and Linear Regression were applied in this work. The results of both were the water levels forecast that had the high accuracy. Moreover, the water levels forecasting dashboard was developed for using to monitor the water levels at the Pattani River as well.
文摘Bangladesh is vulnerable to climate change-induced sea level rise due to its location and socioeconomic position. The study examines the Beel Kapalia region in polder no. 24 of the Monirampur upazila of Jessore district, Khulna division. To assess local attitudes on sea level rise-related permanent flooding, Kapalia, Monoharpur, Nehalpur, Balidaha, and Panchakori were polled. This flooding has disrupted residents’ lifestyles, making them vulnerable to increasing sea levels. Viability and adaptability were assessed using livelihood capitals. Participants’ thoughts and knowledge about their resilience in several livelihood factors were gathered using participatory rural appraisal (PRA) instruments and a questionnaire survey in the area. Major discoveries include the impact of permanent floods on Beel Kapalia’s livelihoods, vulnerability and resilience assessments in numerous villages, and community viewpoints on regional adaptation methods to mitigate these consequences. The study found that a sustained 30.5 cm inundation would reduce local human, natural, physical, financial, and social capital resilience to 69.6%, 30.7%, 69.1%, 68.9%, and 69.1%. A constant 61 cm inundation would lower resistance to 40.9%, 8.7%, 42.4%, 45.6%, and 43.8%. Residents believe they can weather a 30.5 cm inundation with local adaptation measures, but if the water level rises to 61 cm, they may be displaced.
基金funded by the Humanities and Social Science Research Project of Chongqing Education Commission(23SKJD111)Science and Technology Research Project of Chongqing Education Commission(KJQN202101122 and KJQN201904002)+6 种基金Project of Chongqing Higher Education Association(CQGJ21B057)Chongqing Graduate Education Teaching Reform Research Project(yjg223121)Chongqing Higher Education Teaching Reform Research Project(233337)Higher Education Research Project,Chongqing University of Technology(2022ZD01)Annual project of the“14th Five-Year Plan”for National Business Education in 2022(SKKT-22015)Party Building and Ideological and Political Project,Chongqing University of Technology(2022DJ307)Chongqing University of Technology Undergraduate Education and Teaching Reform Research Project(2021YB21).
文摘The Yangtze River Basin’s water resource utilization efficiency(WUE)and scientific and technological innovation level(STI)are closely connected,and the comprehension of these relationships will help to improve WUE and promote local economic growth and conservation of water.This study uses 19 provinces and regions along the Yangtze River’s mainstream from 2009 to 2019 as its research objects and uses a Vector Auto Regression(VAR)model to quantitatively evaluate the spatiotemporal evolution of the coupling coordination degree(CCD)between the two subsystems of WUE and STI.The findings show that:(1)Both the WUE and STI in the Yangtze River Basin showed an upward trend during the study period,but the STI effectively lagged behind the WUE;(2)The CCD of the two subsystems generally showed an upward trend,and the CCD of each province was improved to varying degrees,but the majority of regions did not develop a high-quality coordination stage;(3)The CCD of the two systems displayed apparent positive spatial autocorrelation in the spatial correlation pattern,and there were only two types:high-high(H-H)urbanization areas and low-low(L-L)urbanization areas;(4)The STI showed no obvious response to the impact of the WUE,while the WUE responded greatly to the STI,and both of them were highly dependent on themselves.Optimizing their interaction mechanisms should be the primary focus of high-quality development in the basin of the Yangtze River in the future.These results give the government an empirical basis to enhance the WUE and promote regional sustainable development.
文摘The two main factors contributing to depletion of freshwater resources are climate change and anthropological variables. This study presents statistical analyses that are local in its specifics yet global in its relevance. The decline in Gulf Coast aquifer water quality and quantity has been alarming especially with the increased demand on fresh water in neighboring non-coastal communities. This study used seawater levels, groundwater use, and well data to investigate the association of these factors on the salinity of water indicated by chloride levels. Statistical analyses were conducted pointing to the high significance of both sea water level and groundwater withdrawals to chloride concentrations. However, groundwater withdrawal had higher significance which points to the need of water management systems in order to limit groundwater use. The findings also point to the great impact of increased groundwater salinity in the Gulf Coast aquifer on agriculture and socioeconomic status of coastal communities. The high costs of desalinization point to the increased signification of water rerouting and groundwater management systems. Further investigation and actions are in dire need to manage these vulnerabilities of the coastal communities.
文摘As a worldwide authoritative, IPCC forecasted in 1990 that the world- s sea level would most probably rise by 0. 66 m by the end of the 21 st century. Combined with the local depression caused by the sink of the earth’s crust and the human activity, the relative sea level in the Chanaiiang River mouth will rise by about 1. 0 m during the same peried. Based on this figure, the article forecasted the impacts of sea-level rise on the safety coefficient of coastal structures and civil facilities, loss of wetlands, flood hazard as well as water intrusion. The results show that: 1 ) 40% as large as the present engil1eering mass should be added to the coastal structures in order to maintain the safety coefficient; 2 ) a dynamic loss of 60 km2 of wetlands, as much as 15% of the present total area, would be caused; 3) to hinder the increase inflood hazard dy11amic capacity to drain water must increase by at least 34 times as large as the present; 4) to maintain the present navigation conditions, about 100 million yuan (RMB) is needed to reconstruct over 30(X) bridges and 30 sluices;and 5 ) the disastrous salt water intrusion caused by the sea-level rise could be encountered by the increase in water discharge from the Three Gorge Reservoir in the dry season.
文摘Global temperature is predicted to increase in the end of the century and one of the primary consequences of this warming is the sea level rise. Considering the vulnerabilities on coastal systems and water resources, it is important to evaluate the potential effects of this rising in coastal areas, since the saline intrusion on rivers would be intensified, leading to problems related to water quality. In this context, the present work aimed to verify saline intrusion changes along an important river, São Francisco Canal, located in Rio de Janeiro State, Brazil. For this purpose, a hydrodynamic modeling was performed using SisBaHiA, considering different sea levels and tide conditions. According to the results, it was verified the intensification on saline intrusion and higher salinity values due to a sea level rise of 0.5 m. These results show that new licenses for water withdrawals must be carefully analyzed as the fluvial flow plays an important role to contain the saltwater intrusion on the studied river. Accordingly, it is recommended the evaluation of climate change effects in order to choose best strategies to reduce coastal vulnerability, and the use of this theme on environmental licensing and territorial planning, integrating water planning with coastal management.
文摘Lixiahe region is one of the susceptible area to flood and waterlogging disasters in China due to its low topographic relief and having difficulty in draining floodwater away.The condition will be more serious if sea level rises in the future.The estimated results by some scientists indicate that the sea level could rise probably 20-100 cm by 2050.However,what the effect will future sea level rise exerts on flood drainage and on flood or waterlogging disasters? A hydrological system model has been developed to study the problem in the lower reaches of the Sheyang River basin.Predicted results from the model show that,if sea level rises,drainage capacity of each drainage river will decrease obviously,and the water level will also rise.From the change of drainage capacity of drainage rivers the trends of flood and waterlogging disasters are analyzed in the paper if the severe flood that happened in the past meets with future sea level rise.Some countermeasures for disaster reduction and prevention against sea-level rise are put forward.
基金supported by the National Basic Research Program of China (Grant No. 2012CB955604)the National Outstanding Youth Science Fund Project of China (Grant No. 41425019)+1 种基金the National Natural Science Foundation of China (Grant Nos. 91337105, 41461144001, 41230527, and 41275083)Public science and technology research funds projects of ocean (201505013)
文摘Against a background of climate change, Macao is very exposed to sea level rise (SLR) because of its low elevation, small size, and ongoing land reclamation. Therefore, we evaluate sea level changes in Macao, both historical and, especially, possible future scenarios, aiming to provide knowledge and a framework to help accommodate and protect against future SLR. Sea level in Macao is now rising at an accelerated rate: 1.35 mm yr-1 over 1925-2010 and jumping to 4.2 mm yr I over 1970-2010, which outpaces the rise in global mean sea level. In addition, vertical land movement in Macao contributes little to local sea level change. In the future, the rate of SLR in Macao will be about 20% higher than the global average, as a consequence of a greater local warming tendency and strengthened northward winds. Specifically, the sea level is projected to rise 8-12, 22-51 and 35-118 cm by 2020, 2060 and 2100, respectively, depending on the emissions scenario and climate sensitivity. Under the --8.5 W m 2 Representative Concentration Pathway (RCP8.5) scenario the increase in sea level by 2100 will reach 65 118 cm--double that under RCP2.6. Moreover, the SLR will accelerate under RCP6.0 and RCP8.5, while remaining at a moderate and steady rate under RCP4.5 and RCP2.6. The key source of uncertainty stems from the emissions scenario and climate sensitivity, among which the discrepancies in SLR are small during the first half of the 21st century but begin to diverge thereafter.
基金supported by National Natural Science Foundation of China (No. 40574020)Basic Research item of Institute of Earthquake Science, China Earthquake Administration (No. 0207690236).
文摘Coseismic water level changes which may have been induced by the Wenchuan Ms8.0 earthquake and its 15 larger aftershocks (Ms〉5.4) have been observed at Tangshan well. We analyze the correlation between coseismic parameters (maximum amplitude, duration, coseismic step and the time when the coseismic reach its maximum amplitude) and earthquake parameters (magnitude, well-epicenter distance and depth), and then compare the time when the coseismic oscillation reaches its maximum amplitude with the seismogram from Douhe seismic station which is about 16.3 km away from Tangshan well. The analysis indicates that magnitude is the main factor influencing the induced coseismic water level changes, and that the well-epicenter distance and depth have less influence. Ms magnitude has the strongest correlation with the coseismic water level changes comparing to Mw and ML magnitudes. There exists strong correlation between the maximum amplitude, step size and the oscillation duration. The water level oscillation and step are both caused by dynamic strain sourcing from seismic waves. Most of the times when the oscillations reach their maximum amplitudes are between S and Rayleigh waves. The coseismic water level changes are due to the co-effect of seismic waves and hydro-geological environments.
文摘A nonlinear two-dimension dynamic model of storm surge (SS) and astronomical tide(AT) was used to investigate the effects of SS and AT on expected sea level rise (SLR) at principalcoastal stations in the Shanghai region and to estimate numerically the probable maximum water lerel for2010 - 2050. Evidence suggests tha SLR causes reduction of SS; that its influence on SS depends on theintensity and path of a tropical cyclone and the station locality; tha the SLR’s effects on AT vary periodi-cally, with the peried being the same as tha of the AT’s: and that as the SLR increment grows, its impactincreases; below mean sea level (MSL) the effect is positive at rising tide and negative at ebb tide, andvice versa for the effect above MSL. Study of the probable maximum water level (by assuming SLR, SSalong favorable tropical cyclone’s path, its possible maximum intensity and effectivee spring AT at a rangeof set paths of Cyclones 5612, 8114, 9417) showed that the probable maximum water level is 740, 745,and 751 cm in the years 2010, 2030, and 2050, respetively, over the target region.
文摘The results presented in this paper are a part of the research results of the thesis "research on scientific basis and practice of develop a system of monitoring the impacts of climate change on surface water and groundwater". Case study: Ma river basin in Vietnam. The results were implemented: (i) data collection, fieldwork survey, synthesis and analysis of information and data; (ii) partitioning the influence degree of climate change and sea level rise to groundwater; (iii) determining criteria to select monitoring routes, location of monitoring groundwater in the condition of climate change and sea level rise and (iv) developing the monitoring system. The research's results have practical implications for the water resources management in the context of climate change and sea level rise in Ma river basin.