期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
A review on evaluation of crack resistance of asphalt mixture by semi-circular bending test
1
作者 Yongjun Meng Weikang Kong +4 位作者 Chaoliang Gou Shenwen Deng Yirong Hu Jing Chen Liupeng Fan 《Journal of Road Engineering》 2023年第1期87-97,共11页
Although there are many kinds of fracture tests to choose from in evaluating the crack resistance of asphalt mixture,the semi-circular bending(SCB)test has attracted a lot of attention in the academic road engineering... Although there are many kinds of fracture tests to choose from in evaluating the crack resistance of asphalt mixture,the semi-circular bending(SCB)test has attracted a lot of attention in the academic road engineering community because of its simplicity,stability,and flexibility in testing and evaluation.The SCB test has become a common method to study the cracking resistance of asphalt mixture in recent years.This paper mainly summarizes the overview of the SCB test,summarizes some research results and common characterization parameters of the SCB test method in monotone test and fatigue test in recent years,and predicts and suggests the research direction of the SCB test in the future.It is found that the research on the monotonic SCB test is more comprehensive,and the research on the SCB fatigue test needs to be further improved in the aspects of loading mode,characterization parameter selection,and so on.Researchers can flexibly adjust the geometric dimensions and the test parameters of semi-cylindrical specimens,and conduct comprehensive analysis combined with the results of numerical simulation.The crack resistance of asphalt mixture can be comprehensively evaluated by fracture energy,fracture toughness,stiffness,flexibility index and other fracture indicators,combined with the crack propagation of the specimen.The analysis of numerical simulation can confirm the test results.In order to standardize the setting of fatigue parameters for future application,it is necessary to standardize the setting of bending performance. 展开更多
关键词 Asphalt mixture Crack resistance Fatigue performance Semi-circular bending test
下载PDF
Numerical analysis of bending property of bi-modulus materials and a new method for measurement of tensile elastic modulus
2
作者 Tianmin Wang Jianhong Ye 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2539-2555,共17页
In nature,there are widely distributed bi-modulus materials with different deformation characteristics under compressive and tensile stress states,such as concrete,rock and ceramics.Due to the lack of constitutive mod... In nature,there are widely distributed bi-modulus materials with different deformation characteristics under compressive and tensile stress states,such as concrete,rock and ceramics.Due to the lack of constitutive model that could reasonably consider the bi-modulus property of materials,and the lack of simple and reliable measurement methods for the tensile elastic parameters of materials,scientists and engineers always neglect the effect of the bi-modulus property of materials in engineering design and numerical simulation.To solve this problem,this study utilizes the uncoupled strain-driven constitutive model proposed by Latorre and Montáns(2020)to systematically study the distributions and magnitudes of stresses and strains of bi-modulus materials in the three-point bending test through the numerical method.Furthermore,a new method to synchronously measure the tensile and compressive elastic moduli of materials through the four-point bending test is proposed.The numerical results show that the bi-modulus property of materials has a significant effect on the stress,strain and displacement in the specimen utilized in the three-point and four-point bending tests.Meanwhile,the results from the numerical tests,in which the elastic constitutive model proposed by Latorre and Montáns(2020)is utilized,also indicate that the newly proposed measurement method has a good reliability.Although the new measurement method proposed in this study can synchronously and effectively measure the tensile and compressive elastic moduli,it cannot measure the tensile and compressive Poisson’s ratios. 展开更多
关键词 Bi-modulus material Uncoupled strain-driven constitutive model Three-point bending test Four-point bending test Tensile elastic modulus FssiCAS
下载PDF
Evaluation of Contact Pressure in Bending under Tension Test by a Pressure Sensitive Film
3
作者 Luis Fernando Folle Lirio Schaeffer 《Journal of Surface Engineered Materials and Advanced Technology》 2016年第4期201-214,共15页
The contact pressure acting on the sheet/tools interface has been studied because of growing the concern about the wear of tools. Recent studies make use of numerical simulation software to evaluate and correlate this... The contact pressure acting on the sheet/tools interface has been studied because of growing the concern about the wear of tools. Recent studies make use of numerical simulation software to evaluate and correlate this pressure with the friction and wear generated. Since there are many studies that determine the coefficient of friction in sheet metal forming by bending under tension (BUT) test, the contact pressure between the pin and the sheet was measured using a film that has the ability to record the applied pressure. The vertical force applied to pin was also measured. The results indicate that the vertical force is more accurate to set the contact pressure that using equations predetermined. It was also observed that the contact area between the sheet and the pin is always smaller than the area calculated geometrically. The friction coefficient was determined for the BUT test through several equations proposed by various authors in order to check if there is much variation between the results. It was observed that the friction coefficient showed little variation for each equation, and each one can be used. The material used was the commercially pure aluminum, alloy Al1100. 展开更多
关键词 Coefficient of Friction Sheet Metal Forming Process bending under Tension test Contact Pressure Technology Applied to Design
下载PDF
Experimental Study on the Influence of Cross-Section Type of Marine Cable Conductors on the Bending Performance 被引量:1
4
作者 YAN Jun HU Hai-tao +3 位作者 LU Hai-long YIN Yuan-chao BU Yu-feng LU Qing-zhen 《China Ocean Engineering》 SCIE EI CSCD 2022年第4期629-637,共9页
Through the development of marine energy,marine cables are the key equipment for transmission of electrical energy between surface platforms and underwater facilities.Fatigue failure is a critical failure mode of mari... Through the development of marine energy,marine cables are the key equipment for transmission of electrical energy between surface platforms and underwater facilities.Fatigue failure is a critical failure mode of marine cables.The bending performance of the cable conductor has a major influence on both bending and fatigue performances of the overall cable structure.To study the influence of different types of the conductor cross-section on the bending performances of marine cable conductors,three types of copper conductors with the same cross-sectional area,i.e.,noncompressed round,compressed round,and shaped wire conductors,were selected.The experimental results demonstrated that the cross-section type significantly affects the bending performances of copper conductors.In particular,the bending stiffness of the shaped wire conductor is the highest among the three conductor types.Four key evaluation parameters,i.e.,the bending stiffness,maximum bending moment,envelope area,and engineering critical slip point,were selected to compare and analyze the bending hysteresis curves of the three copper conductors.The differences in the key evaluation parameters were analyzed based on the structural dimensional parameters,processing methods,and classical bending stiffness theoretical models of the three copper conductor types.The results provide an important theoretical guidance for the structural design and engineering applications of marine cable conductors. 展开更多
关键词 marine cable conductors cross-section type bending performance theoretical model bending test
下载PDF
Analysis of Crack Expansion and Morphology of Cross-Laminated Timber Planar Shear Test
5
作者 Yujie Huang Yifan Zhang +3 位作者 Zheng Wang Assima Dauletbe Yao Lu Zhaoyu Shen 《Journal of Renewable Materials》 SCIE EI 2022年第3期849-870,共22页
To describe the dynamic cracking process of the CLT vertical layer,the correlation between a load-displacement curve,specimen cracking,and planar shear failure mechanism of the CLT were explored.A three-point bending ... To describe the dynamic cracking process of the CLT vertical layer,the correlation between a load-displacement curve,specimen cracking,and planar shear failure mechanism of the CLT were explored.A three-point bending test and an improved planar shear test are used to evaluate the shear performance of the CLT.In this study,the load-displacement curve is recorded,the experimental part is synchronized with the video,the dynamic process of cracking of the vertical layer is observed and analyzed throughout the test.From the load-displacement curve,the image characteristics of the initial cracking and the sudden increase of the cracking of the specimen are summar-ized.The description results of the whole dynamic process of the CLT vertical layer cracking are analyzed by pla-nar shear strength value,cracking phenomenon,and azimuth angle of cracking surface.The main conclusions show that the three-point bending test and the improved plain shear test can be used to test the plain shear strength of the CLT,with a difference of only 5.7%.The original crack and the new crack expansion account for 18.9%and 81.1%of the main cracking surface,respectively.And the vertical layer of the CLT specimen under three-point bending has three cracking morphologies,such as radial shake,ring shake,neither along with the radial shake nor along with the ring shake.The azimuth angle of the cracking surface of the CLT vertical layer under planar shear is quite consistent with the first main plane azimuth of the vertical layer of the CLT specimens under the three-point bending test and the shearing test.The shape in the cracking direction of the left half-span or the right half-span of the vertical layer of the specimen is similar to the Chinese character eight. 展开更多
关键词 Cross-laminated timber planar shearing performance three-point bending test improved planar shear test crack expansion dynamic process
下载PDF
Nodes Effect on the Bending Performance of Laminated Bamboo Lumber Unit
6
作者 Yiwei Xuan Haitao Li +4 位作者 Zhemin Bei Zhenhua Xiong Rodolfo Lorenzo Ileana Corbi Ottavia Corbi 《Journal of Renewable Materials》 SCIE EI 2021年第6期1143-1156,共14页
This research studied the ultimate bearing capacity of laminated bamboo lumber(LBL)unit and thereby calculated the maximum bending moment.The load-displacement chart for all specimens was obtained.Then the flexural ca... This research studied the ultimate bearing capacity of laminated bamboo lumber(LBL)unit and thereby calculated the maximum bending moment.The load-displacement chart for all specimens was obtained.Then the flexural capacity of members with and without bamboo nodes in the middle section was coMPared.The bending experiment phenomenon of LBL unit was concluded.Different failure modes of bending components were analysed and concluded.Finally,the bending behaviour of LBL units is coMPared with other bamboo and timber products.It is shown that the average ultimate load of BS members is 866.1 N,the average flexural strength is 101 MPa,the average modulus of elasticity is 8.3 GPa,and the average maximum displacement is 17.02 mm.The average ultimate load of BNS members is 1008.1 N,the average flexural strength is 118.02 MPa,the average modulus of elasticity is 9.9 GPa,and the average maximum displacement is 18.26 mm.Laminated bamboo lumber(LBL)unit without bamboo nodes(BNS)has relatively higher flexural strength coMPared with LBL unit with bamboo nodes(BS).The presence of bamboo nodes reduces the strength of the entire structure.Three failure modes were concluded for BS members,and two failure modes were observed for BNS members during the experimental process.According to a coMParison between the LBL unit and other products,the flexural strength and bending modulus of elasticity of the LBL unit are similar as bamboo scrimber and raw bamboo components,which is much higher than timber components. 展开更多
关键词 Laminated Bamboo Lumber bending test flexural strength bamboo node
下载PDF
Bending Analysis of a Filament-Wound Composite Tube
7
作者 Gyula Szabó Károly Váradi Dávid Felhos 《Modern Mechanical Engineering》 2018年第1期66-77,共12页
The aim of this paper is to present finite element model of a filament-wound composite tube subjected to three-point bending and bending in accordance with standard EN?15807:2011?(railway applications-pneumatic half c... The aim of this paper is to present finite element model of a filament-wound composite tube subjected to three-point bending and bending in accordance with standard EN?15807:2011?(railway applications-pneumatic half couplings) along with its experimental verification. In the finite element model, composite reinforcement plies have been characterized by linear orthotropic material model, while rubber liners have been described by a two-parameter MooneyRivlin model. Force-displacement curves of three-point bending show fairly good agreement between simulation results and experimental data. Reaction forces of FE simulation and experiment of standard bending test are in good agreement. 展开更多
关键词 Filament-Wound Composite Tube Three-Point bending test bending Analysis Finite Element Model
下载PDF
Effect of layer thickness on the flexural property and microstructure of 3D-printed rhomboid polymer-reinforced cemented tailing composites 被引量:1
8
作者 Ziyue Zhao Shuai Cao Erol Yilmaz 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期236-249,共14页
For mines with poor ore bodies and surrounding rocks,the general mining method does not allow the ore to be extracted from underground safely and efficiently.For these mines,the downward layered filling mining techniq... For mines with poor ore bodies and surrounding rocks,the general mining method does not allow the ore to be extracted from underground safely and efficiently.For these mines,the downward layered filling mining technique is undoubtedly the most suitable mining method.The downward filling mining technique may eliminate the troubles relating to poor ore deposit conditions,such as production safety,ore loss rate,and depletion rate.However,in this technique,the safety of the artificial roof of the next stratum is of paramount importance.Cementitious tailings backfilling(CTB)that is not sufficiently cemented and causes collapses could threaten ore production.This paper explores a diamond-shaped composite structure to mimic the stability of a glued false roof in an actual infill mine based on the recently emerged three-dimensional(3D)printing technology.Experimental means such as three-point bending and digital image correlation(DIC)techniques were used to explore the flexural characteristics of 3D construction specimens and CTB combinations with different cement/tailings weight ratios at diverse layer heights.The results show that the 3D structure with a 14-mm ply height and CTB has strong flexural characteristics,with a maximum deflection value of 30.1 mm,while the 3D-printed rhomboid polymer(3D-PRP)structure with a 26-mm ply height is slightly worse in terms of flexural strength characteristics,but it has a higher maximum flexural strength of 2.83 MPa.A combination of 3D structure and CTB has more unique mechanical properties than CTB itself.This research work offers practical knowledge on the artificial roof performance of the downward layered filling mining technique and builds a scientific knowledge base regarding the successful application of CTB material in mines. 展开更多
关键词 tailings cemented fills 3D printed rhomboidal polymer three-point bending test digital image correlation
下载PDF
The influence of multi-metal-veins on fractures propagation investigated by the experiment and simulation
9
作者 Xiao-Dong Hu Shao-Bo Han +5 位作者 Shou Ma Fu-Jian Zhou Yang Qiu Xin-Tong Li Ming-Hui Li Zhi-Yong Tu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1707-1723,共17页
Fracture propagation is affected by multi-metal-veins formed by geological diagenesis in shale during the hydraulic fracturing.However,the influence of multi-metal-veins on fractures propagation remains unclear.To sol... Fracture propagation is affected by multi-metal-veins formed by geological diagenesis in shale during the hydraulic fracturing.However,the influence of multi-metal-veins on fractures propagation remains unclear.To solve the problem,based on the semi-circle bending(SCB)test and the extended finite element(XFEM)theory,the interaction between multi-metal-veins and fractures is investigated.The experimental results reveal that the fractures usually deflect at the upper or lower interfaces between metal veins and rocks(e.g.the specimen S-2),which is different from the propagation behavior of fractures in calcite veins.Meanwhile,the fracture toughness of the specimen S-1 is 24.40%higher than that of the specimen S-2,indicating that the increasing of total thickness of multiple metal veins in-creases the resistance to the fracture vertical propagation.The simulation results show that the increasing of the number,total thickness of veins,the modulus difference between veins and rock,the approach angle and the notch angle all increase the resistance of the fracture passing through metal veins.The maximum deviation distance(Dmax)of the fracture decreases with the number of veins,while thickness combination types of metal veins do not affect Dmax.The reduction of the notch angle leads to the more tortuous fracture propagation path.Finally,we propose a new comprehensive fracture network pattern.Fracture networks are divided into two categories,including orthogonal fracture networks and sub-orthogonal fracture networks,and then divided into six sub-categories further.The research results will provide reference for hydraulic fracturing of shale reservoirs containing multi-metal-veins. 展开更多
关键词 Multi-metal-veins FRACTURE Fracture interaction Semi-circle bending test Numerical simulation
下载PDF
Microstructural, mechanical and corrosion characterization of an as-cast Mg-3Zn-0.4Ca alloy for biomedical applications 被引量:6
10
作者 N.Pulido-Gonzalez B.Torres +2 位作者 P.Rodrigo N.Hort J.Rams 《Journal of Magnesium and Alloys》 SCIE 2020年第2期510-522,共13页
The as-cast Mg-3Zn-0.4Ca alloy shows a great potential to be used in biomedical applications due to its composition,mechanical properties and biodegradability.Zn and Ca appear naturally in the organism accomplishing v... The as-cast Mg-3Zn-0.4Ca alloy shows a great potential to be used in biomedical applications due to its composition,mechanical properties and biodegradability.Zn and Ca appear naturally in the organism accomplishing vital functions.The alloy consists of an a-Mg matrix and a eutectic composed of a-Mg4-Ca2Mg6Zn3.The eutectic product enhances the mechanical properties of the studied alloy,causing strengthening and providing superior hardness values.In this alloy,cracks initiate at the intermetallic compounds and progress through the matrix because of the open network formed by the eutectics.Attending to the corrosion results,the eutectic product presents a noble potential compared to the a-Mg phase.For this reason,the corrosion progresses preferentially through the matrix,avoiding the(α-Mg+Ca2Mg6Zri3)eutectic product,when the alloy is in direct contact to Hank's solution. 展开更多
关键词 Mg-Zn-Ca alloys Biomaterials Biodegradable implants NANOINDENTATION Three-point bending test Corrosion behaviour
下载PDF
Interdiffusion behavior between Cr and Zr and its effect on the microcracking behavior in the Cr-coated Zr-4 alloy 被引量:3
11
作者 Ji-Shen Jiang Dong-Qing Wang +3 位作者 Ming-Yue Du Xian-Feng Ma Chen-Xue Wang Xiu-Jie He 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第12期1-12,共12页
High-temperature chromium(Cr)-zirconium(Zr)interdiffusion commonly occurs in Cr-coated zircaloys applied for enhanced accident-tolerant fuel(ATF)claddings.Such interdiffusion changes the interfacial microstructure and... High-temperature chromium(Cr)-zirconium(Zr)interdiffusion commonly occurs in Cr-coated zircaloys applied for enhanced accident-tolerant fuel(ATF)claddings.Such interdiffusion changes the interfacial microstructure and thus the fracture mechanism of the coating under external loading.In this study,the interdiffusion behavior in a magnetron sputtered Cr coating deposited on a Zr-4 alloy was studied in a vacuum environment at 1160C.In addition,the effect of interdiffusion on the microcracking behavior of the Cr coating was determined by in situ three-point bending tests.The experimental results show that the interdiffusion behavior resulted in the formation of a ZrCr2 layer,accompanied by the consumption of Cr coating and interfacial roughening.The growth of the diffusion layer followed a nearly parabolic law with respect to annealing time,and the residual stress of the annealed coating decreased with increasing annealing time.Under external loading,a large number of cracks were generated in the brittle interlayer,and some interfacial cracks were formed and grew at the ZrCr2/Zr-4 interface.Despite the remarkable microcracks in the ZrCr2 layer,the vacuum-annealed Cr coating has significantly fewer cracks than the original coating,mainly because of the recrystallization of the coating during annealing. 展开更多
关键词 Accident-tolerant fuel Surface coating INTERDIFFUSION Three-point bending test Crack propagation
下载PDF
Comparative Study on Various Strength Parameters of Structural Elements Made from Cross-Laminated Timber
12
作者 Mohammad Anwar-Us-Saadat Janeshka Goonewardena +2 位作者 Bidur Kafle Mahmud Ashraf Mahbube Subhani 《Journal of Renewable Materials》 SCIE EI 2022年第6期1575-1606,共32页
Cross laminated timber(CLT)is an innovative and environment friendly engineered timber product with superior structural performance.CLT offers strong resistance against both in-plane and out-of-plane loading.Hence,it ... Cross laminated timber(CLT)is an innovative and environment friendly engineered timber product with superior structural performance.CLT offers strong resistance against both in-plane and out-of-plane loading.Hence,it is widely used as floors,roofs or wall elements.Considerable experimental research on CLT under various loading conditions has been done in the recent past.This article presents a comprehensive review of various design methods to determine basic mechanical properties such as tension,compression and rolling shear strength of CLT with primary focus on Norway spruce.All relevant experimental data available from existing literature were collated and consequently been used to evaluate the performance of various methods to design CLT structures.The comparison revealed that different methods show considerable variance in predicting the capacity of CLT panels due to the variation in timber species,which affects the corresponding mechanical properties of the lamella.In addition to species,rolling shear properties can also vary considerably depending on the type of experimental technique used for testing.A predictive model has also been proposed to correlate rolling shear strength obtained from shear analogy method to that obtained using planar shear. 展开更多
关键词 Cross-laminated timber mass timber mechanical strength rolling shear strength planar shear test short span bending test
下载PDF
Stress Distribution in Maxillary Central Incisors without Ferrules: A Finite Element Analysis of Post and Core Systems
13
作者 Akihiro Tagahara Chihiro Masaki +4 位作者 Tomotaka Nodai Takashi Munemasa Taro Mukaibo Yusuke Kondo Ryuji Hosokawa 《Open Journal of Stomatology》 2021年第7期251-262,共12页
<strong>Purpose: </strong>The purpose of this study was to identify optimal post and core materials for central incisors without ferrules using three-dimensional finite element analysis and three-point ben... <strong>Purpose: </strong>The purpose of this study was to identify optimal post and core materials for central incisors without ferrules using three-dimensional finite element analysis and three-point bending tests. <strong>Methods: </strong>Stress analyses were performed with six models: cast metal post and core (MP), composite resin core alone, straight fiber-reinforced post-composite resin core (FSR), tapered fiber-reinforced post-composite resin core, straight titanium post-composite resin core (TSR), and tapered titanium post-composite resin core (TTR). A 100-N load was applied to the lingual surface at a 45&deg; angle to the long axis of the tooth. Maximum von Mises stress distributions were calculated with finite element analysis software. Five samples each of composite resin, straight fiber-reinforced post, straight titanium post, straight fiber-reinforced post and composite resin, and straight titanium post and composite resin were subjected to three-point bending tests, followed by analysis of variance and Tukey’s multiple comparison test. <strong>Results: </strong>Stress distribution was optimal on TTR. Maximum von Mises stress on the cervical side of the post was greatest in TSR (693 MPa) and TTR (556 MPa). Maximum stress on the apical side of the post was greatest in MP (110 MPa). Maximum stress in surrounding dentin was lowest in MP (203 MPa) and TTR (250 MPa). Gap distance was smallest in MP (0.09 mm) and largest in FSR (0.26 mm). Mean maximum three-point bending force was lowest in composite resin (26.9 N/mm) and highest in titanium post and composite resin (97.1 N/mm). Titanium post bending strength was consistently greater than that of the fiber-reinforced post (p < 0.01). <strong>Conclusion:</strong> These results revealed optimal stress distribution and high bending strength with the tapered titanium post and resin combination, suggesting that this combination can most effectively prevent root or post fracture in an anterior tooth without a ferrule. 展开更多
关键词 Fiber Post Titanium Post FERRULE Three-Dimensional Finite Element Analysis Three-Point bending test
下载PDF
Bending mechanical properties of W/TiN/Ta composites with interfacial TiN coatings
14
作者 Gao-Yong Xu Tong Zhou +1 位作者 Ying Zhang Jin-Ping Suo 《Rare Metals》 SCIE EI CAS CSCD 2023年第5期1718-1723,共6页
Tungsten is one of best candidates for plasma facing materials(PFMs)in fusion reactors.But its application in fusion areas is strongly restricted by the inherent brittleness and high ductile-brittle transition tempera... Tungsten is one of best candidates for plasma facing materials(PFMs)in fusion reactors.But its application in fusion areas is strongly restricted by the inherent brittleness and high ductile-brittle transition temperature.To improve the toughness of W-based materials,W/TiN/Ta-laminated composites were fabricated by spark plasma sintering.Three-point bending test was performed to investigate the bending mechanical properties.Multiple crack propagation is the main crack propagation mode in W/TiN/Ta composites.Energy dissipation by interfacial debonding and crack deflection at interfaces as well as crack bridging by Ta foils and plastic deformation of Ta can contribute to the toughening of W/TiN/Ta composites.The existence of interfacial TiN coatings can act as weak points and promote interfacial debonding.TiN coatings with(111)preferred orientation are found to be conducive to the strengthening of W/TiN/Ta composites. 展开更多
关键词 Multilayer structure Interfacial TiN coatings bending test TOUGHNESS
原文传递
Structural Glass Fiber Reinforced Concrete for Slabs on Ground
15
作者 Philipp Lober Klaus Holschemacher 《World Journal of Engineering and Technology》 2014年第3期48-54,共7页
This paper aims to contribute to the classification and specification of glass fiber reinforced concrete (GFRC) and to deal with the question if structural glass fiber reinforced concrete as a special kind of glass fi... This paper aims to contribute to the classification and specification of glass fiber reinforced concrete (GFRC) and to deal with the question if structural glass fiber reinforced concrete as a special kind of glass fiber reinforced concrete is suited for use in load-bearing members. Despite excellent material properties, the use of glass fibers in a concrete matrix is carried out so far only in non- structural elements or as a modification for the prevention of shrinkage cracks. The aim of re- search at the University of Applied Sciences in Leipzig is the use of alkali-resistant macro glass fibers as concrete reinforcement in structural elements as an alternative to steel fiber reinforcement. Slabs on ground, as an example for structural members, provide a sensible application for the new material because they can be casted as load bearing and non-load bearing and are mostly made of steel fiber reinforced concrete. In the future, structural glass fiber reinforced concrete shall provide a simple and visually appealing alternative to conventional steel bar or steel fiber reinforced concrete. The glass fibers can also be used in combination with conventional reinforcing bars or mat reinforcements. Initial investigations have announced some potential. 展开更多
关键词 Glass Fiber Reinforced Concrete GFRC Slab on Ground Structural Concrete bending test
下载PDF
Experimental and parametrical investigation of pre-stressed ultrahigh-performance fiberreinforced concrete railway sleepers
16
作者 Sayed AHMED Hossam ATEF Mohamed HUSAIN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第3期411-428,共18页
In this study,ultrahigh-performance fiber-reinforced concrete(UHPFRC)used in a type B70 concrete sleeper is investigated experimentally and parametrically.The main parameters investigated are the steel fiber volume fr... In this study,ultrahigh-performance fiber-reinforced concrete(UHPFRC)used in a type B70 concrete sleeper is investigated experimentally and parametrically.The main parameters investigated are the steel fiber volume fractions(0%,0.5%,1%,and 1.5%).Under European standards,35 UHPFRC sleepers are subjected to static bending tests at the center and rail seat sections,and the screw on the fastening system is pulled out.The first cracking load,failure load,failure mode,crack propagation,load–deflection curve,load–crack width,and failure load from these tests are measured and compared with those of a control sleeper manufactured using normal concrete C50.The accuracy of the parametric study is verified experimentally.Subsequently,the results of the study are applied to UHPFRC sleepers with different concrete volumes to investigate the effects of the properties of UHPFRC on their performance.Experimental and parametric study results show that the behavior of UHPFRC sleepers improves significantly when the amount of steel fiber in the mix is increased.Sleepers manufactured using UHPFRC with a steel fiber volume fraction of 1%and a concrete volume less than 25%that of standard sleeper B70 can be used under the same loads and requirements,which contributes positively to the cost and surrounding environment. 展开更多
关键词 pre-stressed concrete sleeper ultrahigh performance fiber-reinforced concrete pull-out test static bending test steel fiber aspect ratio volume fraction
原文传递
Ductility improvement of GFRP-RC beams using precast confined concrete block in compression zone
17
作者 Nooshin G.AMIRABAD Farshid J.ALAEE Meysam JALALI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第10期1585-1598,共14页
Fiber-reinforced polymers(FRPs)have received considerable research attention because of their high strength,corrosion resistance,and low weight.However,owing to the lack of ductility in this material and the quasi-bri... Fiber-reinforced polymers(FRPs)have received considerable research attention because of their high strength,corrosion resistance,and low weight.However,owing to the lack of ductility in this material and the quasi-brittle behavior of concrete,FRP-reinforced concrete(FRP-RC)beams,even with flexural failure,do not fail in a ductile manner.Because the limited deformation capacity of FRP-RC beams depends on the ductility of their compression zones,the present study proposes using a precast confined concrete block(PCCB)in the compression zone to improve the ductility of the beams.A control beam and four beams with different PCCBs were cast and tested under four-point bending conditions.The control beam failed due to shear,and the PCCBs exhibited different confinements and perforations.The goal was to find an appropriate PCCB for use in the compression zone of the beams,which not only improved the ductility but also changed the failure mode of the beams from shear to flexural.Among the employed blocks,a ductile PCCB with low equivalent compressive strength increased the ductility ratio of the beam to twice that of the control beam.The beam failed in pure flexure with considerable deformation capacity and without significant stiffness reduction. 展开更多
关键词 DUCTILITY four-point bending test glass fiber-reinforced polymer precast confined concrete block
原文传递
Experimental investigation on concrete overlaid with textile reinforced mortar:Influences of mix,temperature,and chemical exposure
18
作者 Smitha GOPINATH Ramesh GOPAL Hemalatha THIYAGARAJAN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第2期271-283,共13页
Textile reinforced mortar is widely used as an overlay for the repair,rehabilitation,and retrofitting of concrete structures.Recently,textile reinforced concrete has been identified as a suitable lining material for i... Textile reinforced mortar is widely used as an overlay for the repair,rehabilitation,and retrofitting of concrete structures.Recently,textile reinforced concrete has been identified as a suitable lining material for improving the durability of existing concrete structures.In this study,we developed a textile-reinforced mortar mix using river sand and evaluated the different characteristics of the textile-reinforced mortar under various exposure conditions.Studies were carried out in two phases.In the first phase,the pullout strength,temperature resistance,water absorption,and compressive and bending strength values of three different textile-reinforced mortar mixes with a single type of textile reinforcement were investigated.In the second phase,the chemical resistance of the mix that showed the best performance in the abovementioned tests was examined for use as an overlay for a concrete substrate.Investigations were performed on three different thicknesses of the textile reinforced mortar overlaid on concrete specimens that were subjected to acidic and alkaline environments.The flexural responses and degradations of the textile reinforced mortar overlaid specimens were examined by performing bending tests.The experimental findings indicated the feasibility of using textile reinforced mortar as an overlay for durable concrete construction practices. 展开更多
关键词 textile reinforced mortar bending tests acid and alkaline environment concrete overlay
原文传递
Modeling of flexible wheat straw by discrete element method and its parameter calibration 被引量:8
19
作者 Fanyi Liu Jian Zhang Jun Chen 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第3期42-46,共5页
To simulate the bending behavior of wheat straw,a flexible straw model was developed based on the Hertz-Mindlin with bonding model using discrete element method.The proposed model was constructed by bonding straw unit... To simulate the bending behavior of wheat straw,a flexible straw model was developed based on the Hertz-Mindlin with bonding model using discrete element method.The proposed model was constructed by bonding straw units(filled by multi-spherical method)through parallel bonding keys.By means of a three-point bending test,single-factor sensitivity analysis and calibration of bonding parameters were performed.Results showed that elastic modulus of the flexible straw enhanced with the increase of bonded disk radius,normal stiffness per unit area and shear stiffness per unit area.The three bonding parameters were respectively calibrated to be 2.11 mm,9.48×10^(9)N/m^(3)and 4.67×10^(9)N/m^(3) by solving the regression equation developed from Box-Behnken design.The simulated elastic modulus(in terms of those three calibrated parameters)exhibited 4.20%difference with the measured one.It proved that the flexible straw could accurately demonstrate bending property of the wheat straw.This would not only help to improve accuracy in simulating wheat straw,but also provide references for flexible straw modeling and parameters calibration of other crops. 展开更多
关键词 DEM flexible straw three-point bending test bonding parameters sensitivity analysis parameters calibration
原文传递
Effects of High Temperature Oxidation on Mechanical Properties of Ti_3AlC_2 被引量:2
20
作者 Xichao Li Lili Zheng +2 位作者 Yuhai Qian Jingjun Xu Meishuan Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第6期596-602,共7页
The oxidation tests of Ti_3AlC_2 were conducted at 1100 and 1200?C in air for 48 and 360 h, respectively,and the effects of high temperature oxidation on the flexural strength and hardness of Ti_3AlC_2 were investigat... The oxidation tests of Ti_3AlC_2 were conducted at 1100 and 1200?C in air for 48 and 360 h, respectively,and the effects of high temperature oxidation on the flexural strength and hardness of Ti_3AlC_2 were investigated. The microstructure, grain size and phase compositions of Ti_3AlC_2 substrate didn't change after oxidation, hence the oxide removed Ti_3AlC_2 substrate maintained its initial flexural strength and hardness. However, the flexural strength of oxide retained Ti_3AlC_2 decreased by about 5%. Acoustic emission monitoring indicated that during the process of three-point bending test, the formed Al_2O_3 scale on Ti_3AlC_2 surface fractured firstly in a cleavage manner, then the substrate/oxide interface cracked,and finally the Ti_3AlC_2 substrate fractured. The mechanical degradation was caused by the preferential formation of cracks in brittle Al_2O_3 scale as well as at defective and lacunose grain boundaries of the substrate where stress concentration generated. The mechanical degradation was insensitive to oxidation temperature and time in the present conditions. In addition, the surface hardness increased significantly after oxidation due to the formed hard Al_2O_3 scale on the surface of Ti_3AlC_2 substrate. 展开更多
关键词 TI3ALC2 OXIDATION Flexural strength HARDNESS bending test Acoustic emission
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部