In order to effectively improve meshing performance of spiral bevel and hypoid gears generated by the duplex helical method, the effects of straight lined and circular cutting edges profile on meshing and contact of s...In order to effectively improve meshing performance of spiral bevel and hypoid gears generated by the duplex helical method, the effects of straight lined and circular cutting edges profile on meshing and contact of spiral bevel and hypoid gears were investigated analytically. Firstly, a mathematical model of spiral bevel and hypoid gears with circular blade profile was established according to the cutting characteristics of the duplex helical method. Based on a hypoid gear drive, the tooth bearings and the functions of transmission errors of four design cases were analyzed respectively by the use of the tooth contact analysis(TCA), and the contact stresses of the four design cases were analyzed and compared using simulation software. Finally, the curvature radius of the circular profile blade was optimized. The results show that the contact stresses are availably reduced, and the areas of edge contact and severe contact stresses can be avoided by selecting appropriate circular blade profile. In addition, the convex and concave sides are separately modified by the use of different curvature radii of inside and outside blades, which can increase the flexibility of the duplex helical method.展开更多
A virtual computerized numerical control C CNC) processing system is built for spiral bevel and hypoid gears. The pre-designed process of the solution to locate the way of realization is investigated. A kind of combi...A virtual computerized numerical control C CNC) processing system is built for spiral bevel and hypoid gears. The pre-designed process of the solution to locate the way of realization is investigated. A kind of combined programming method and principle of solid modeling are chosen. Multienvironmental programming thought and the inter-connected mechanisms between different environments are applied in the proposed system. The problems of data exchange and compatibility of modules are settled. Environment of the system is founded with object oriented programming thought. AutoCAD is located as the graphic environment. Matlab is used for editing the computation module. Virtual C ++6.0 is the realization environment of the main module. Windows is the platform for realizing the multi-environmental method. Through establishing the virtual system based windows message handling mechanism and the component object model, the application of multienvironmental programming is realized in the manufacture system simulation. The virtual gear product can be achieved in the accomplished software.展开更多
Distinguishing with traditional tooth profile of spiral bevel and hypoid gear, it proposed a new tooth profile namely the spherical involute. Firstly, a new theory of forming the spherical involute tooth profile was p...Distinguishing with traditional tooth profile of spiral bevel and hypoid gear, it proposed a new tooth profile namely the spherical involute. Firstly, a new theory of forming the spherical involute tooth profile was proposed. Then, this theory was applied to complete parametric derivation of each part of its tooth profile. For enhancing the precision, the SWEEP method used for formation of each part of tooth surface and G1 stitching schema for obtaining a unified tooth surface are put forward and made the application in the accurate modeling. Lastly, owing to the higher accuracy of tooth surface of outputted model, it gave some optimization approaches. Given numerical example about the model can show that this designed gear with spherical involute tooth profile can achieve fast and accurate parametric modeling and provide a foundation for tooth contact analysis (TCA) in digitized design and manufacture.展开更多
基金Project(2011CB706800-G)supported by the National Basic Research Program of ChinaProject(51375159)supported by the National Natural Science Foundation of China+1 种基金Project(20120162110004)supported by the Postdoctoral Science Foundation of ChinaProject(2015JJ5020)supported by the Science Foundation of Hunan Province,China
文摘In order to effectively improve meshing performance of spiral bevel and hypoid gears generated by the duplex helical method, the effects of straight lined and circular cutting edges profile on meshing and contact of spiral bevel and hypoid gears were investigated analytically. Firstly, a mathematical model of spiral bevel and hypoid gears with circular blade profile was established according to the cutting characteristics of the duplex helical method. Based on a hypoid gear drive, the tooth bearings and the functions of transmission errors of four design cases were analyzed respectively by the use of the tooth contact analysis(TCA), and the contact stresses of the four design cases were analyzed and compared using simulation software. Finally, the curvature radius of the circular profile blade was optimized. The results show that the contact stresses are availably reduced, and the areas of edge contact and severe contact stresses can be avoided by selecting appropriate circular blade profile. In addition, the convex and concave sides are separately modified by the use of different curvature radii of inside and outside blades, which can increase the flexibility of the duplex helical method.
基金Supported by Natural Science Foundation of China (No. 50475117).
文摘A virtual computerized numerical control C CNC) processing system is built for spiral bevel and hypoid gears. The pre-designed process of the solution to locate the way of realization is investigated. A kind of combined programming method and principle of solid modeling are chosen. Multienvironmental programming thought and the inter-connected mechanisms between different environments are applied in the proposed system. The problems of data exchange and compatibility of modules are settled. Environment of the system is founded with object oriented programming thought. AutoCAD is located as the graphic environment. Matlab is used for editing the computation module. Virtual C ++6.0 is the realization environment of the main module. Windows is the platform for realizing the multi-environmental method. Through establishing the virtual system based windows message handling mechanism and the component object model, the application of multienvironmental programming is realized in the manufacture system simulation. The virtual gear product can be achieved in the accomplished software.
文摘Distinguishing with traditional tooth profile of spiral bevel and hypoid gear, it proposed a new tooth profile namely the spherical involute. Firstly, a new theory of forming the spherical involute tooth profile was proposed. Then, this theory was applied to complete parametric derivation of each part of its tooth profile. For enhancing the precision, the SWEEP method used for formation of each part of tooth surface and G1 stitching schema for obtaining a unified tooth surface are put forward and made the application in the accurate modeling. Lastly, owing to the higher accuracy of tooth surface of outputted model, it gave some optimization approaches. Given numerical example about the model can show that this designed gear with spherical involute tooth profile can achieve fast and accurate parametric modeling and provide a foundation for tooth contact analysis (TCA) in digitized design and manufacture.