This paper presents a wideband frequency-shift keying (FSK) demodulator suitable for a digital data transmission chain of wireless neural stimulation microsystems such as cochlear implants and retinal prostheses. Th...This paper presents a wideband frequency-shift keying (FSK) demodulator suitable for a digital data transmission chain of wireless neural stimulation microsystems such as cochlear implants and retinal prostheses. The demodulator circuit derives a constant frequency clock directly from an FSK carrier, and uses this clock to sample the data bits. The circuit occupies 0.03 mm^2 using a 0.6 μm, 2M/2P, standard CMOS process, and consumes 0.25 mW at 5 V. This circuit was experimentally tested at transmission speed of up to 2.5 Mbps while receiving a 5-10 MHz FSK carrier signal in a cochlear implant system.展开更多
The decoupled coherent Maximum Likelihood (ML) detection algorithm presented in this letter can sharply reduce the complexity of the receiver as well as provide better error performance under the precondition that cha...The decoupled coherent Maximum Likelihood (ML) detection algorithm presented in this letter can sharply reduce the complexity of the receiver as well as provide better error performance under the precondition that channel should be estimated first. Considering the bandwidth inefficiency of Frequency Shift Keying (FSK), the acquisition of channel state information through training sequences will further decrease the transmission efficiency. This letter presents a blind channel estimation algorithm based on noise subspace theory which can acquire channel information without any training symbols. The simulation shows that the algorithm brings about fewer channel estimation errors while the frequency efficiency can be increased.展开更多
In order to satisfy increasingly greater demand for the performance of communication systems, a throughput efficient wireless system based on the extended binary phase shift keying (EBPSK) modulation is presented. S...In order to satisfy increasingly greater demand for the performance of communication systems, a throughput efficient wireless system based on the extended binary phase shift keying (EBPSK) modulation is presented. Simultaneously, corresponding analysis of power spectra is also given with a brief process. The optimal waveform is proposed without useful information loss, by removing linear spectra presenting periodic components. On this basis, the reasonable definition of bandwidth is discussed, which indicates that the EBPSK belongs to the category of the ultra narrow band (UNB) throughput-efficient communication. Meanwhile, the modulation parameters' effects on bandwidth, transmission rate and transmission performance are analyzed. Results illustrate the validity of theoretical analysis and spectrum optimization. Results also prove that this UNB system can obtain good bit error rate (BER) performance with high spectra efficiency.展开更多
根据2PSK调制解调的原理,建立2PSK调制解调的数学模型。采用DDS(Direct Digital Synthesis直接数字频率合成)技术对调制解调中的载波信号进行设计。在此基础上,基于Matlab/Fdatool和DSP Builder搭建了实现2PSK调制解调的硬件电路仿真模...根据2PSK调制解调的原理,建立2PSK调制解调的数学模型。采用DDS(Direct Digital Synthesis直接数字频率合成)技术对调制解调中的载波信号进行设计。在此基础上,基于Matlab/Fdatool和DSP Builder搭建了实现2PSK调制解调的硬件电路仿真模型,并在Matlab和Modelsim中进行了仿真分析。仿真结果表明:本设计很好地实现了2PSK调制解调器的功能,简化了硬件电路,减少了编程时间。展开更多
基金Project supported by the National Basic Research Program (973) of China (No. G2000036508) and the National Natural Science Foun-dation of China (No. 60475018)
文摘This paper presents a wideband frequency-shift keying (FSK) demodulator suitable for a digital data transmission chain of wireless neural stimulation microsystems such as cochlear implants and retinal prostheses. The demodulator circuit derives a constant frequency clock directly from an FSK carrier, and uses this clock to sample the data bits. The circuit occupies 0.03 mm^2 using a 0.6 μm, 2M/2P, standard CMOS process, and consumes 0.25 mW at 5 V. This circuit was experimentally tested at transmission speed of up to 2.5 Mbps while receiving a 5-10 MHz FSK carrier signal in a cochlear implant system.
文摘The decoupled coherent Maximum Likelihood (ML) detection algorithm presented in this letter can sharply reduce the complexity of the receiver as well as provide better error performance under the precondition that channel should be estimated first. Considering the bandwidth inefficiency of Frequency Shift Keying (FSK), the acquisition of channel state information through training sequences will further decrease the transmission efficiency. This letter presents a blind channel estimation algorithm based on noise subspace theory which can acquire channel information without any training symbols. The simulation shows that the algorithm brings about fewer channel estimation errors while the frequency efficiency can be increased.
基金The National Natural Science Foundation of China(No.60472054)the Natural Science Foundation of Jiangsu Province(No.BK2007103)
文摘In order to satisfy increasingly greater demand for the performance of communication systems, a throughput efficient wireless system based on the extended binary phase shift keying (EBPSK) modulation is presented. Simultaneously, corresponding analysis of power spectra is also given with a brief process. The optimal waveform is proposed without useful information loss, by removing linear spectra presenting periodic components. On this basis, the reasonable definition of bandwidth is discussed, which indicates that the EBPSK belongs to the category of the ultra narrow band (UNB) throughput-efficient communication. Meanwhile, the modulation parameters' effects on bandwidth, transmission rate and transmission performance are analyzed. Results illustrate the validity of theoretical analysis and spectrum optimization. Results also prove that this UNB system can obtain good bit error rate (BER) performance with high spectra efficiency.
文摘根据2PSK调制解调的原理,建立2PSK调制解调的数学模型。采用DDS(Direct Digital Synthesis直接数字频率合成)技术对调制解调中的载波信号进行设计。在此基础上,基于Matlab/Fdatool和DSP Builder搭建了实现2PSK调制解调的硬件电路仿真模型,并在Matlab和Modelsim中进行了仿真分析。仿真结果表明:本设计很好地实现了2PSK调制解调器的功能,简化了硬件电路,减少了编程时间。