Tooth bleaching agents may weaken the tooth structure. Therefore, it is important to minimize any risks of tooth hard tissue damage caused by bleaching agents. The aim of this study was to evaluate the effects of appl...Tooth bleaching agents may weaken the tooth structure. Therefore, it is important to minimize any risks of tooth hard tissue damage caused by bleaching agents. The aim of this study was to evaluate the effects of applying 45S5 bioglass (BG) before, after, and during 35% hydrogen peroxide (HP) bleaching on whitening efficacy, physicochemical properties and microstructures of bovine enamel. Seventy-two bovine enamel blocks were prepared and randomly divided into six groups: distilled deionized water (DDW), BG, HP, BG before HP, BG after HP and BG during HP. Colorimetric and microhardness tests were performed before and after the treatment procedure. Representative specimens from each group were selected for morphology investigation after the final tests. A significant color change was observed in group HP, BG before HP, BG after HP and BG during HP. The microhardness loss was in the following order: group HP〉 BG before HP, BG after HP〉 BG during HP〉DDW, BG. The most obvious morphological alteration of was observed on enamel surfaces in group HP, and a slight morphological alteration was also detected in group BG before HP and BG after HP. Our findings suggest that the combination use of BG and HP could not impede the tooth whitening efficacy. Using BG during HP brought better protective effect than pre/post-bleaching use of BG, as it could more effectively reduce the mineral loss as well as retain the surface integrity of enamel. BG may serve as a promising biomimetic adjunct for bleaching therapy to prevent/restore the enamel damage induced by bleaching agents.展开更多
Mechanical alloying and annealing at 1150 °C for 2 h under an argon atmosphere were used to prepare Ti-45S5 bioglass nanocomposites. Ti-45S5 bioglass material was chemically modified by silver. The antibacterial ...Mechanical alloying and annealing at 1150 °C for 2 h under an argon atmosphere were used to prepare Ti-45S5 bioglass nanocomposites. Ti-45S5 bioglass material was chemically modified by silver. The antibacterial activity of Ti-10% 45S5 bioglass nanocomposite containing silver against Streptococcus mutans and Staphylococcus aureus was studied. Nanocomposites were characterized by X-ray diffraction, scanning electron microscopy equipped with an electron energy dispersive spectrometer and transmission electron microscopy to evaluate phase composition, crystal structure and grain size. In vitro bacterial adhesion study indicated a significantly reduced number of Streptococcus mutans and Staphylococcus aureus on the bulk nanostructured Ti-45S5 bioglass-Ag plate surface in comparison to that on microcrystalline Ti plate surface. Nanostructured Ti-based biomaterials can be considered to be the future generation of dental implants.展开更多
Objective: To study the regulating effect of borosilicate bioglass extract on the osteoblast proliferation activity and osteogenesis signaling pathway function. Methods: Osteoblasts MG-63 were cultured and divided int...Objective: To study the regulating effect of borosilicate bioglass extract on the osteoblast proliferation activity and osteogenesis signaling pathway function. Methods: Osteoblasts MG-63 were cultured and divided into borosilicate group and control group that were treated with the culture medium containing borosilicate bioglass extract and the culture medium without extract respectively. After 24 h of treatment, the cell proliferation activity as well as the expression of proliferation activity markers, Wnt signaling pathway molecules and PI3K/AKT signaling pathway molecules was measured. Results: After 24 h of treatment, MTT cell viability of borosilicate group was significantly higher than that of control group, and ALP, OC, OPN, COL-I, Runx2, Wnt1, Wnt3a, β-catenin, LRP5, LRP6, p-PI3K, p-AKT, Bcl-2 and BMP protein expression in cells were significantly higher than those of control group. Conclusion: Borosilicate bioglass extract can enhance the proliferation activity of osteoblasts by activating Wnt pathway and PI3K/AKT pathway.展开更多
Bone regeneration is a critical area in regenerative medicine,particularly in orthopedics,demanding effective biomedical materials for treating bone defects.45S5 bioactive glass(45S5 BG)is a promising material because...Bone regeneration is a critical area in regenerative medicine,particularly in orthopedics,demanding effective biomedical materials for treating bone defects.45S5 bioactive glass(45S5 BG)is a promising material because of its osteoconductive and bioactive properties.As research in this field continues to advance,keeping up-to-date on the latest and most successful applications of this material is imperative.To achieve this,we conducted a comprehensive search on Pub-Med/MEDLINE,focusing on English articles published in the last decade.Our search used the keywords“bioglass 45S5 AND bone defect”in combination.We found 27 articles,and after applying the inclusion criteria,we selected 15 studies for detailed examination.Most of these studies compared 45S5 BG with other cement or scaffold materials.These comparisons demonstrate that the addition of various composites enhances cellular biocompatibility,as evidenced by the cells and their osteogenic potential.Moreover,the use of 45S5 BG is enhanced by its antimicrobial properties,opening avenues for additional investigations and applications of this biomaterial.展开更多
In this study, porous titanium-10 wt% bioglass(BG) composites were fabricated by the process of combining mechanical alloying with space holder sintering. The pore morphology and phase constituents of the milled powde...In this study, porous titanium-10 wt% bioglass(BG) composites were fabricated by the process of combining mechanical alloying with space holder sintering. The pore morphology and phase constituents of the milled powders and porous compacts were characterized by scanning electron microscopy(SEM), X-ray diffractometry(XRD), and Fourier transform infrared spectroscopy(FT-IR). The mechanical properties were determined by running compression test. The porosity of the sintered samples shows a downward trend with the increase of milling time. As the porosity increases, both the compressive strength and elastic modulus decrease. The results illustrate that the fabricated porous compacts with high porosity and suitable mechanical properties have the potential application in bone tissue engineering.展开更多
More and more studies have recognized that the nanosized pores of hydrogels are too small for cells to normally grow and newly formed tissue to infiltrate,which impedes tissue regeneration.Recently,hydrogels with macr...More and more studies have recognized that the nanosized pores of hydrogels are too small for cells to normally grow and newly formed tissue to infiltrate,which impedes tissue regeneration.Recently,hydrogels with macropores and/or controlled degradation attract more and more attention for solving this problem.Sodium alginate/Bioglass(SA/BG)hydrogel,which has been reported to be an injectable and bioactive hydrogel,is also limited to be used as tissue engineering scaffolds due to its nanosized pores.Therefore,in this study,degradation of SA/BG hydrogel was modulated by grafting deferoxamine(DFO)to SA.The functionalized grafted DFO-SA(G-DFO-SA)was used to form G-DFO-SA/BG injectable hydrogel.In vitro degradation experiments proved that,compared to SA/BG hydrogel,G-DFO-SA/BG hydrogel had a faster mass loss and structural disintegration.When the hydrogels were implanted subcutaneously,G-DFO-SA/BG hydrogel possessed a faster degradation and better tissue infiltration as compared to SA/BG hydrogel.In addition,in a rat full-thickness skin defect model,wound healing studies showed that,G-DFO-SA/BG hydrogel significantly accelerated wound healing process by inducing more blood vessels formation.Therefore,G-DFO-SA/BG hydrogel can promote tissue infiltration and stimulate angiogenesis formation,which suggesting a promising application potential in tissue regeneration.展开更多
Bioglass, with the code name 45S5, contains 45% silica, 24.5% CaO, 24.5% Na2O and 6% P2O5 in weight percent. All of these oxides are mixed together and melted at around 1350℃ to form a homogeneous silica network glas...Bioglass, with the code name 45S5, contains 45% silica, 24.5% CaO, 24.5% Na2O and 6% P2O5 in weight percent. All of these oxides are mixed together and melted at around 1350℃ to form a homogeneous silica network glass.1 Bioglass possesses fast biological response and fast bioactivity, when implanted in living tissue. Since Hench et alI reported over 35 years ago that the bioglass composition could chemically bind to bone,展开更多
Large bone defect repair requires biomaterials that promote angiogenesis and osteogenesis.In present work,a nanoclay(Laponite,XLS)-functionalized 3D bioglass(BG)scaffold with hypoxia mimicking property was prepared by...Large bone defect repair requires biomaterials that promote angiogenesis and osteogenesis.In present work,a nanoclay(Laponite,XLS)-functionalized 3D bioglass(BG)scaffold with hypoxia mimicking property was prepared by foam replication coupled with UV photopolymerization methods.Our data revealed that the incorporation of XLS can significantly promote the mechanical property of the scaffold and the osteogenic differentiation of human adipose mesenchymal stem cells(ADSCs)compared to the properties of the neat BG scaffold.Desferoxamine,a hypoxia mimicking agent,encourages bone regeneration via activating hypoxia-inducible factor-1 alpha(HIF-1α)-mediated angiogenesis.GelMA-DFO immobilization onto BG-XLS scaffold achieved sustained DFO release and inhibited DFO degradation.Furthermore,in vitro data demonstrated increased HIF-1αand vascular endothelial growth factor(VEGF)expressions on human adipose mesenchymal stem cells(ADSCs).Moreover,BG-XLS/GelMA-DFO scaffolds also significantly promoted the osteogenic differentiation of ADSCs.Most importantly,our in vivo data indicated BG-XLS/GelMA-DFO scaffolds strongly increased bone healing in a critical-sized mouse cranial bone defect model.Therefore,we developed a novel BG-XLS/GelMA-DFO scaffold which can not only induce the expression of VEGF,but also promote osteogenic differentiation of ADSCs to promote endogenous bone regeneration.展开更多
Recently,exosomes have been extensively applied in tissue regeneration.However,their practical applications are severely restricted by the limited exosome secretion capability of cells.Therefore,developing strategies ...Recently,exosomes have been extensively applied in tissue regeneration.However,their practical applications are severely restricted by the limited exosome secretion capability of cells.Therefore,developing strategies to enhance the production of exosomes and improve their biological function attracts great interest.Studies have shown that biomaterials can significantly enhance the paracrine effects of cells and exosomes are the main signal carriers of intercellular paracrine communication,thus biomaterials are considered to affect the exosome secretion of cells and their biological function.In this study,a widely recognized biomaterial,45S5 Bioglass®(BG),is used to create a mild and cell-friendly microenvironment for mesenchymal stem cells(MSCs)with its ion products.Results showed that BG ion products can significantly improve exosome production of MSCs by upregulating the expression of neutral sphingomyelinase-2(nSMase2)and Rab27a which enhanced the nSMases and Rab GTPases pathways,respectively.Besides,microRNA analysis indicates that BG ion products can modulate the cargoes of MSCs-derived exosomes by decreasing microRNA-342-5p level while increasing microRNA-1290 level.Subsequently,the function of exosomes is modified as their capabilities of promoting the vascularization of endothelial cells and facilitating the intradermal angiogenesis are enhanced.Taken together,BG ion products are confirmed to enhance exosome production and simultaneously improve exosome function,suggesting a feasible approach to improve the practical application of exosomes in regenerative medicine.展开更多
Most related investigations focused on the effects of borate glass on cell proliferation/biocompatibility in vitro or bone repair in vivo; however, very few researches were carried out on other cell behaviors. Three n...Most related investigations focused on the effects of borate glass on cell proliferation/biocompatibility in vitro or bone repair in vivo; however, very few researches were carried out on other cell behaviors. Three novel borate bioglasses were designed as scaffolds for bone regeneration in this wok. Comparative effects of three bioglasses on the behaviors of osteoblastic MC3T3-E1 cells were evaluated. Excellent cytocompatibility of these novel borate bioglasses were approved in this work. Meanwhile, the promotion on cell proliferation, protein secretion and migration with minor cell apoptosis were also discussed in details, which contributed to the potential clinical application as a new biomaterial for orthopedics.展开更多
A new kind of biomedical Ti-45S5 Bioglass-Ag nanocomposites and their scaffolds with antibacterial function was developed by the introduction of 1.5 wt% Ag into the Ti-10 wt% 45S5 Bioglass matrix. The microstructure, ...A new kind of biomedical Ti-45S5 Bioglass-Ag nanocomposites and their scaffolds with antibacterial function was developed by the introduction of 1.5 wt% Ag into the Ti-10 wt% 45S5 Bioglass matrix. The microstructure, hardness and corrosion resistance in Ringer solution of the Ag-doped Ti-45S5 glass were investigated. The Vickers hardness of the bulk Ti-10 wt% 45S5 Bioglass-1.5 wt% Ag nanocomposites reached 480 HVo.3. Contact angles of water on the micro- crystalline Ti and nanostructured Ti-10 wt% 45S5 Bioglass-1.5 wt% Ag sample were determined and show visible decrease from 55.2° to 49.6°. In vitro tests culture of normal human osteoblast cells showed very good cells proliferation, colonization and multilayering. In vitro bacterial adhesion study indicated a significantly reduced number of bacteria (Staphylococcus aureus) on the bulk nanostructured Ti-10 wt% 45S5 Bioglass-1.5 wt% Ag plate surface in comparison with that on microcrystalline Ti plate surface. Development of porous Ti-10 wt% 45S5 Bioglass-1.5 wt% Ag scaffolds aims in enhancing bone ingrowth and prosthesis fixation.展开更多
目的(1)探究锂基生物玻璃水凝胶,赋予介孔生物玻璃材料促成骨、促血管生成和抑制脂肪生成等多重生物医学功能。(2)利用3D打印技术制作导航模板,精确定位股骨头坏死病灶区域和清除病灶,将锂基生物玻璃水凝胶精确注入,观察其修复股骨头坏...目的(1)探究锂基生物玻璃水凝胶,赋予介孔生物玻璃材料促成骨、促血管生成和抑制脂肪生成等多重生物医学功能。(2)利用3D打印技术制作导航模板,精确定位股骨头坏死病灶区域和清除病灶,将锂基生物玻璃水凝胶精确注入,观察其修复股骨头坏死的作用。方法利用明胶和甲基丙烯酸酐制备了甲基丙烯酰化明胶(gelatin methacryloyl,GelMA)及锂基生物玻璃水凝胶(GelMA and Li-mesoporous bioglass,GM/M-Li)。扫描电子显微镜(scanning electron microscope,SEM)、透射电子显微镜(transmission electron microscope,TEM)对材料进行表征分析;同时,通过细胞活/死染色、细胞增殖实验(cell counting kit-8,CCK-8)及细胞形态观察评估材料的生物相容性;另外,使用免疫荧光染色、碱性磷酸酯酶染色、茜素红染色、成血管实验、油红O染色评估材料的成骨分化能力、成血管能力和抑制脂肪生成的能力。体内成功建立了兔股骨头坏死模型,利用3D导航模板联合髓芯减压术将坏死骨去除后填充GM/M-Li水凝胶。通过苏木素伊红(hematoxylin eosin,HE)染色、油红O染色、免疫组化染色验证其成骨、成血管和抑制脂肪生成能力。结果SEM结果显示GM/M-Li水凝胶材料为三维多孔的结构;TEM结果表明,M-Li材料为纳米级别;离子释放实验证明了GM/M-Li水凝胶中的锂元素,同时具有缓释作用;细胞活/死染色、CCK-8证明了GM/M-Li水凝胶材料具有良好的生物相容性;体外成骨、成血管、抑制脂肪生成实验证实,材料中锂离子的释放有利于骨髓间充质干细胞的成骨分化、人脐静脉血管内皮细胞的小管形成,抑制了脂肪前体细胞的脂肪形成。体内HE染色和免疫荧光验证了GM/M-Li水凝胶有效促进了骨组织、血管再生;通过油红O染色验证了GM/M-Li水凝胶的抑制脂肪能力。结论利用3D打印技术制作导航模板,将GM/M-Li精确注入股骨头坏死病灶区域和清除病灶。因GM/M-Li水凝胶具有良好的生物相容性,其可通过调节骨髓间充质干细胞成骨方向分化,促进股骨头坏死中骨缺损的重建,同时促进了血管的生成,减少脂肪细胞的浸润。展开更多
The bioglass particles/poly(lactide-co-glycolide)(BG/PLGA) scaffold has been extensively explored for biomedical applications due to its excellent advantages of mechanical property and controllable degradation rat...The bioglass particles/poly(lactide-co-glycolide)(BG/PLGA) scaffold has been extensively explored for biomedical applications due to its excellent advantages of mechanical property and controllable degradation rate. In ottr previous studies, the BG nanoparticle sttrface-grafted with poly(L-lactide)(PLLA) could substantially improve the phase compatibility between the polymer matrix and the inorganic phase and the biocompatibility of the scaffolds. However, using the traditional preparation methods to prepare the composite scaffold can barely achieve a high po- rosity and porous connectivity. In this work, the PLLA-grafted bioglass/PLGA(g-BG/PLGA) scaffolds were prepared by supercritical carbon dioxide foaming(Sc-CO2) with before or after particulate leaching(PL) method(Sc-CO2-PL or PL-Sc-CO2 method, PL/Sc-CO2 methods) and their applications in bone replacement and tissue engineering were investigated. The porosities of the g-BG/PLGA scaffolds prepared by the PL/Sc-CO2 methods were higher than 90%, and their mechanical properties had similar values with human cancellous bone. The proliferations of osteoblasts on the scaffolds were dependent on different preparation methods. The PL/Sc-CO2 methods significantly increased the proliferations of the cells. Computed tomography(CT) three-dimensional(3D) reconstruction tomographies of the implantation study for repairing calvarium defects of rabbits demonstrated that the calvarium defects were almost completely filled by the osteotylus in PL/Sc-CO2 method group at 12 week post-surgery, while there was little callus formation in PL method group and untreated control group. These results indicate that the g-BG/PLGA scaffolds prepared by the PL/Sc-CO2 methods exhibit rapid mineralization and osteoconductivity and are the optimal composites for bone repair.展开更多
Carbon nanotube reinforced bioglass composites have been successfully synthesized by two comparative sintering techniques, i.e., spark plasma sintering (SPS) and conventional compaction and sinteirng. The composites...Carbon nanotube reinforced bioglass composites have been successfully synthesized by two comparative sintering techniques, i.e., spark plasma sintering (SPS) and conventional compaction and sinteirng. The composites show improved mechanical properties, with SPS technique substantially better than conventional compact and sintering approach. Using SPS, compared with the 45S5Bioglass matrix, the maximum flexural strength and fracture toughness increased by 159% and 105%, respectively. Enhanced strength and toughness are attributed to the interfacial bonding and bridging effects between the carbon nanotubes and bioglass powders during crack propagations.展开更多
Biodegradable magnesium(Mg) and its alloy show huge potential as temporary bone substitute due to the favorable biocompatibility and mechanical compatibility. However, one issue deserves attention is the too fast degr...Biodegradable magnesium(Mg) and its alloy show huge potential as temporary bone substitute due to the favorable biocompatibility and mechanical compatibility. However, one issue deserves attention is the too fast degradation. In this work, mesoporous bioglass(MBG)with high pore volume(0.59 cc/g) and huge specific surface area(110.78 m^(2)/g) was synthesized using improved sol-gel method, and introduced into Mg-based composite via laser additive manufacturing. Immersion tests showed that the incorporated MBG served as powerful adsorption sites, which promoted the in-situ deposition of apatite by successively adsorbing Ca2+and HPO42-. Such dense apatite film acted as an efficient protection layer and enhanced the corrosion resistance of Mg matrix, which was proved by the electrochemical impedance spectroscopy measurements. Thereby, Mg based composite showed a significantly decreased degradation rate of 0.31 mm/year. Furthermore,MBG also improved the mechanical properties as well as cell behavior. This work highlighted the advantages of MBG in the fabrication of Mg-based implant with enhanced overall performance for orthopedic application.展开更多
基金supported by the Research Fund from Science and Technology Department of Sichuan Province (No. 2009FZ0065)Key Project of the Science and Technology Department of Sichuan Province (No. 2011SZ0101)+1 种基金Doctoral Fund of Ministry of Education of China (No. 20120181120002)supported by Open Fund of State Key Laboratory of Oral Diseases, Sichuan University
文摘Tooth bleaching agents may weaken the tooth structure. Therefore, it is important to minimize any risks of tooth hard tissue damage caused by bleaching agents. The aim of this study was to evaluate the effects of applying 45S5 bioglass (BG) before, after, and during 35% hydrogen peroxide (HP) bleaching on whitening efficacy, physicochemical properties and microstructures of bovine enamel. Seventy-two bovine enamel blocks were prepared and randomly divided into six groups: distilled deionized water (DDW), BG, HP, BG before HP, BG after HP and BG during HP. Colorimetric and microhardness tests were performed before and after the treatment procedure. Representative specimens from each group were selected for morphology investigation after the final tests. A significant color change was observed in group HP, BG before HP, BG after HP and BG during HP. The microhardness loss was in the following order: group HP〉 BG before HP, BG after HP〉 BG during HP〉DDW, BG. The most obvious morphological alteration of was observed on enamel surfaces in group HP, and a slight morphological alteration was also detected in group BG before HP and BG after HP. Our findings suggest that the combination use of BG and HP could not impede the tooth whitening efficacy. Using BG during HP brought better protective effect than pre/post-bleaching use of BG, as it could more effectively reduce the mineral loss as well as retain the surface integrity of enamel. BG may serve as a promising biomimetic adjunct for bleaching therapy to prevent/restore the enamel damage induced by bleaching agents.
文摘Mechanical alloying and annealing at 1150 °C for 2 h under an argon atmosphere were used to prepare Ti-45S5 bioglass nanocomposites. Ti-45S5 bioglass material was chemically modified by silver. The antibacterial activity of Ti-10% 45S5 bioglass nanocomposite containing silver against Streptococcus mutans and Staphylococcus aureus was studied. Nanocomposites were characterized by X-ray diffraction, scanning electron microscopy equipped with an electron energy dispersive spectrometer and transmission electron microscopy to evaluate phase composition, crystal structure and grain size. In vitro bacterial adhesion study indicated a significantly reduced number of Streptococcus mutans and Staphylococcus aureus on the bulk nanostructured Ti-45S5 bioglass-Ag plate surface in comparison to that on microcrystalline Ti plate surface. Nanostructured Ti-based biomaterials can be considered to be the future generation of dental implants.
文摘Objective: To study the regulating effect of borosilicate bioglass extract on the osteoblast proliferation activity and osteogenesis signaling pathway function. Methods: Osteoblasts MG-63 were cultured and divided into borosilicate group and control group that were treated with the culture medium containing borosilicate bioglass extract and the culture medium without extract respectively. After 24 h of treatment, the cell proliferation activity as well as the expression of proliferation activity markers, Wnt signaling pathway molecules and PI3K/AKT signaling pathway molecules was measured. Results: After 24 h of treatment, MTT cell viability of borosilicate group was significantly higher than that of control group, and ALP, OC, OPN, COL-I, Runx2, Wnt1, Wnt3a, β-catenin, LRP5, LRP6, p-PI3K, p-AKT, Bcl-2 and BMP protein expression in cells were significantly higher than those of control group. Conclusion: Borosilicate bioglass extract can enhance the proliferation activity of osteoblasts by activating Wnt pathway and PI3K/AKT pathway.
文摘Bone regeneration is a critical area in regenerative medicine,particularly in orthopedics,demanding effective biomedical materials for treating bone defects.45S5 bioactive glass(45S5 BG)is a promising material because of its osteoconductive and bioactive properties.As research in this field continues to advance,keeping up-to-date on the latest and most successful applications of this material is imperative.To achieve this,we conducted a comprehensive search on Pub-Med/MEDLINE,focusing on English articles published in the last decade.Our search used the keywords“bioglass 45S5 AND bone defect”in combination.We found 27 articles,and after applying the inclusion criteria,we selected 15 studies for detailed examination.Most of these studies compared 45S5 BG with other cement or scaffold materials.These comparisons demonstrate that the addition of various composites enhances cellular biocompatibility,as evidenced by the cells and their osteogenic potential.Moreover,the use of 45S5 BG is enhanced by its antimicrobial properties,opening avenues for additional investigations and applications of this biomaterial.
文摘In this study, porous titanium-10 wt% bioglass(BG) composites were fabricated by the process of combining mechanical alloying with space holder sintering. The pore morphology and phase constituents of the milled powders and porous compacts were characterized by scanning electron microscopy(SEM), X-ray diffractometry(XRD), and Fourier transform infrared spectroscopy(FT-IR). The mechanical properties were determined by running compression test. The porosity of the sintered samples shows a downward trend with the increase of milling time. As the porosity increases, both the compressive strength and elastic modulus decrease. The results illustrate that the fabricated porous compacts with high porosity and suitable mechanical properties have the potential application in bone tissue engineering.
基金the Natural Science Foundation of China(grant No.31771024 and 31971274)the Interdisciplinary Program of Shanghai Jiao Tong University(project number:ZH2018ZDA20).
文摘More and more studies have recognized that the nanosized pores of hydrogels are too small for cells to normally grow and newly formed tissue to infiltrate,which impedes tissue regeneration.Recently,hydrogels with macropores and/or controlled degradation attract more and more attention for solving this problem.Sodium alginate/Bioglass(SA/BG)hydrogel,which has been reported to be an injectable and bioactive hydrogel,is also limited to be used as tissue engineering scaffolds due to its nanosized pores.Therefore,in this study,degradation of SA/BG hydrogel was modulated by grafting deferoxamine(DFO)to SA.The functionalized grafted DFO-SA(G-DFO-SA)was used to form G-DFO-SA/BG injectable hydrogel.In vitro degradation experiments proved that,compared to SA/BG hydrogel,G-DFO-SA/BG hydrogel had a faster mass loss and structural disintegration.When the hydrogels were implanted subcutaneously,G-DFO-SA/BG hydrogel possessed a faster degradation and better tissue infiltration as compared to SA/BG hydrogel.In addition,in a rat full-thickness skin defect model,wound healing studies showed that,G-DFO-SA/BG hydrogel significantly accelerated wound healing process by inducing more blood vessels formation.Therefore,G-DFO-SA/BG hydrogel can promote tissue infiltration and stimulate angiogenesis formation,which suggesting a promising application potential in tissue regeneration.
文摘Bioglass, with the code name 45S5, contains 45% silica, 24.5% CaO, 24.5% Na2O and 6% P2O5 in weight percent. All of these oxides are mixed together and melted at around 1350℃ to form a homogeneous silica network glass.1 Bioglass possesses fast biological response and fast bioactivity, when implanted in living tissue. Since Hench et alI reported over 35 years ago that the bioglass composition could chemically bind to bone,
基金This work is supported by the Chinese National Natural Science Foundation of China(31600773)Zhejiang Provincial Natural Science Foundation of China(LY18C100002).
文摘Large bone defect repair requires biomaterials that promote angiogenesis and osteogenesis.In present work,a nanoclay(Laponite,XLS)-functionalized 3D bioglass(BG)scaffold with hypoxia mimicking property was prepared by foam replication coupled with UV photopolymerization methods.Our data revealed that the incorporation of XLS can significantly promote the mechanical property of the scaffold and the osteogenic differentiation of human adipose mesenchymal stem cells(ADSCs)compared to the properties of the neat BG scaffold.Desferoxamine,a hypoxia mimicking agent,encourages bone regeneration via activating hypoxia-inducible factor-1 alpha(HIF-1α)-mediated angiogenesis.GelMA-DFO immobilization onto BG-XLS scaffold achieved sustained DFO release and inhibited DFO degradation.Furthermore,in vitro data demonstrated increased HIF-1αand vascular endothelial growth factor(VEGF)expressions on human adipose mesenchymal stem cells(ADSCs).Moreover,BG-XLS/GelMA-DFO scaffolds also significantly promoted the osteogenic differentiation of ADSCs.Most importantly,our in vivo data indicated BG-XLS/GelMA-DFO scaffolds strongly increased bone healing in a critical-sized mouse cranial bone defect model.Therefore,we developed a novel BG-XLS/GelMA-DFO scaffold which can not only induce the expression of VEGF,but also promote osteogenic differentiation of ADSCs to promote endogenous bone regeneration.
基金supported by the Natural Science Foundation of China(Grant No.31771024 and 31971274)the Interdisciplinary Program of Shanghai Jiao Tong University(Project Number:ZH2018ZDA20).
文摘Recently,exosomes have been extensively applied in tissue regeneration.However,their practical applications are severely restricted by the limited exosome secretion capability of cells.Therefore,developing strategies to enhance the production of exosomes and improve their biological function attracts great interest.Studies have shown that biomaterials can significantly enhance the paracrine effects of cells and exosomes are the main signal carriers of intercellular paracrine communication,thus biomaterials are considered to affect the exosome secretion of cells and their biological function.In this study,a widely recognized biomaterial,45S5 Bioglass®(BG),is used to create a mild and cell-friendly microenvironment for mesenchymal stem cells(MSCs)with its ion products.Results showed that BG ion products can significantly improve exosome production of MSCs by upregulating the expression of neutral sphingomyelinase-2(nSMase2)and Rab27a which enhanced the nSMases and Rab GTPases pathways,respectively.Besides,microRNA analysis indicates that BG ion products can modulate the cargoes of MSCs-derived exosomes by decreasing microRNA-342-5p level while increasing microRNA-1290 level.Subsequently,the function of exosomes is modified as their capabilities of promoting the vascularization of endothelial cells and facilitating the intradermal angiogenesis are enhanced.Taken together,BG ion products are confirmed to enhance exosome production and simultaneously improve exosome function,suggesting a feasible approach to improve the practical application of exosomes in regenerative medicine.
基金the financial support of the project from the National High Technology Research and Development Program of China("863 Program",No. 2012AA020502)
文摘Most related investigations focused on the effects of borate glass on cell proliferation/biocompatibility in vitro or bone repair in vivo; however, very few researches were carried out on other cell behaviors. Three novel borate bioglasses were designed as scaffolds for bone regeneration in this wok. Comparative effects of three bioglasses on the behaviors of osteoblastic MC3T3-E1 cells were evaluated. Excellent cytocompatibility of these novel borate bioglasses were approved in this work. Meanwhile, the promotion on cell proliferation, protein secretion and migration with minor cell apoptosis were also discussed in details, which contributed to the potential clinical application as a new biomaterial for orthopedics.
文摘A new kind of biomedical Ti-45S5 Bioglass-Ag nanocomposites and their scaffolds with antibacterial function was developed by the introduction of 1.5 wt% Ag into the Ti-10 wt% 45S5 Bioglass matrix. The microstructure, hardness and corrosion resistance in Ringer solution of the Ag-doped Ti-45S5 glass were investigated. The Vickers hardness of the bulk Ti-10 wt% 45S5 Bioglass-1.5 wt% Ag nanocomposites reached 480 HVo.3. Contact angles of water on the micro- crystalline Ti and nanostructured Ti-10 wt% 45S5 Bioglass-1.5 wt% Ag sample were determined and show visible decrease from 55.2° to 49.6°. In vitro tests culture of normal human osteoblast cells showed very good cells proliferation, colonization and multilayering. In vitro bacterial adhesion study indicated a significantly reduced number of bacteria (Staphylococcus aureus) on the bulk nanostructured Ti-10 wt% 45S5 Bioglass-1.5 wt% Ag plate surface in comparison with that on microcrystalline Ti plate surface. Development of porous Ti-10 wt% 45S5 Bioglass-1.5 wt% Ag scaffolds aims in enhancing bone ingrowth and prosthesis fixation.
文摘目的(1)探究锂基生物玻璃水凝胶,赋予介孔生物玻璃材料促成骨、促血管生成和抑制脂肪生成等多重生物医学功能。(2)利用3D打印技术制作导航模板,精确定位股骨头坏死病灶区域和清除病灶,将锂基生物玻璃水凝胶精确注入,观察其修复股骨头坏死的作用。方法利用明胶和甲基丙烯酸酐制备了甲基丙烯酰化明胶(gelatin methacryloyl,GelMA)及锂基生物玻璃水凝胶(GelMA and Li-mesoporous bioglass,GM/M-Li)。扫描电子显微镜(scanning electron microscope,SEM)、透射电子显微镜(transmission electron microscope,TEM)对材料进行表征分析;同时,通过细胞活/死染色、细胞增殖实验(cell counting kit-8,CCK-8)及细胞形态观察评估材料的生物相容性;另外,使用免疫荧光染色、碱性磷酸酯酶染色、茜素红染色、成血管实验、油红O染色评估材料的成骨分化能力、成血管能力和抑制脂肪生成的能力。体内成功建立了兔股骨头坏死模型,利用3D导航模板联合髓芯减压术将坏死骨去除后填充GM/M-Li水凝胶。通过苏木素伊红(hematoxylin eosin,HE)染色、油红O染色、免疫组化染色验证其成骨、成血管和抑制脂肪生成能力。结果SEM结果显示GM/M-Li水凝胶材料为三维多孔的结构;TEM结果表明,M-Li材料为纳米级别;离子释放实验证明了GM/M-Li水凝胶中的锂元素,同时具有缓释作用;细胞活/死染色、CCK-8证明了GM/M-Li水凝胶材料具有良好的生物相容性;体外成骨、成血管、抑制脂肪生成实验证实,材料中锂离子的释放有利于骨髓间充质干细胞的成骨分化、人脐静脉血管内皮细胞的小管形成,抑制了脂肪前体细胞的脂肪形成。体内HE染色和免疫荧光验证了GM/M-Li水凝胶有效促进了骨组织、血管再生;通过油红O染色验证了GM/M-Li水凝胶的抑制脂肪能力。结论利用3D打印技术制作导航模板,将GM/M-Li精确注入股骨头坏死病灶区域和清除病灶。因GM/M-Li水凝胶具有良好的生物相容性,其可通过调节骨髓间充质干细胞成骨方向分化,促进股骨头坏死中骨缺损的重建,同时促进了血管的生成,减少脂肪细胞的浸润。
基金Supported by the Key Scientific and Technological Projects of Jilin Province, China(No.20170204041GX), the National Natural Science Foundation of China(Nos.81400487, 51673190, 51673187), the State Scholarship Fund of China(No. 201506175119) and the Research Fund of Jilin University, China(Nos.3D516B703431, 3R2161193431).
文摘The bioglass particles/poly(lactide-co-glycolide)(BG/PLGA) scaffold has been extensively explored for biomedical applications due to its excellent advantages of mechanical property and controllable degradation rate. In ottr previous studies, the BG nanoparticle sttrface-grafted with poly(L-lactide)(PLLA) could substantially improve the phase compatibility between the polymer matrix and the inorganic phase and the biocompatibility of the scaffolds. However, using the traditional preparation methods to prepare the composite scaffold can barely achieve a high po- rosity and porous connectivity. In this work, the PLLA-grafted bioglass/PLGA(g-BG/PLGA) scaffolds were prepared by supercritical carbon dioxide foaming(Sc-CO2) with before or after particulate leaching(PL) method(Sc-CO2-PL or PL-Sc-CO2 method, PL/Sc-CO2 methods) and their applications in bone replacement and tissue engineering were investigated. The porosities of the g-BG/PLGA scaffolds prepared by the PL/Sc-CO2 methods were higher than 90%, and their mechanical properties had similar values with human cancellous bone. The proliferations of osteoblasts on the scaffolds were dependent on different preparation methods. The PL/Sc-CO2 methods significantly increased the proliferations of the cells. Computed tomography(CT) three-dimensional(3D) reconstruction tomographies of the implantation study for repairing calvarium defects of rabbits demonstrated that the calvarium defects were almost completely filled by the osteotylus in PL/Sc-CO2 method group at 12 week post-surgery, while there was little callus formation in PL method group and untreated control group. These results indicate that the g-BG/PLGA scaffolds prepared by the PL/Sc-CO2 methods exhibit rapid mineralization and osteoconductivity and are the optimal composites for bone repair.
文摘Carbon nanotube reinforced bioglass composites have been successfully synthesized by two comparative sintering techniques, i.e., spark plasma sintering (SPS) and conventional compaction and sinteirng. The composites show improved mechanical properties, with SPS technique substantially better than conventional compact and sintering approach. Using SPS, compared with the 45S5Bioglass matrix, the maximum flexural strength and fracture toughness increased by 159% and 105%, respectively. Enhanced strength and toughness are attributed to the interfacial bonding and bridging effects between the carbon nanotubes and bioglass powders during crack propagations.
基金National Natural Science Foundation of China (51935014,52165043, 82072084, 81871498)Jiang Xi Provincial Natural Science Foundation of China (20192ACB20005,2020ACB214004)+6 种基金The Provincial Key R&D Projects of Jiangxi (20201BBE51012)Guangdong Province Higher Vocational Colleges&Schools Pearl River Scholar Funded Scheme (2018)Shenzhen Science and Technology Plan Project (JCYJ20170817112445033)Innovation Team Project on University of Guangdong Province(2018GKCXTD001)Technology Innovation Platform Project of Shenzhen Institute of Information Technology 2020(PT2020E002)China Postdoctoral Science Foundation(2020M682114)Open Research Fund of Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology。
文摘Biodegradable magnesium(Mg) and its alloy show huge potential as temporary bone substitute due to the favorable biocompatibility and mechanical compatibility. However, one issue deserves attention is the too fast degradation. In this work, mesoporous bioglass(MBG)with high pore volume(0.59 cc/g) and huge specific surface area(110.78 m^(2)/g) was synthesized using improved sol-gel method, and introduced into Mg-based composite via laser additive manufacturing. Immersion tests showed that the incorporated MBG served as powerful adsorption sites, which promoted the in-situ deposition of apatite by successively adsorbing Ca2+and HPO42-. Such dense apatite film acted as an efficient protection layer and enhanced the corrosion resistance of Mg matrix, which was proved by the electrochemical impedance spectroscopy measurements. Thereby, Mg based composite showed a significantly decreased degradation rate of 0.31 mm/year. Furthermore,MBG also improved the mechanical properties as well as cell behavior. This work highlighted the advantages of MBG in the fabrication of Mg-based implant with enhanced overall performance for orthopedic application.