In this contribution, we present an all-optical quantitative framework for bioluminescence tomography with non-contact measurement. The framework is comprised of four indispensable steps: extraction of the geometrica...In this contribution, we present an all-optical quantitative framework for bioluminescence tomography with non-contact measurement. The framework is comprised of four indispensable steps: extraction of the geometrical structures of the subject, light flux reconstruction on arbitrary surface, calibration and quantification of the surface light flux and internal bioluminescence reconstruction. In particular, the geometrical structures are retrieved using a completely optical method and captured under identical viewing conditions with the bioluminescent images. As a result, the proposed framework avoids the utilization of computed tomography or magnetic resonance imaging to provide the geometrical structures. On the basis of experimental measurements, we evaluate the performance of the proposed all-optical quantitative framework using a mouse shaped phantom. Preliminary result reveals the potential and feasibility of the proposed framework for bioluminescence tomography.展开更多
目的制备稳定表达萤火虫荧光素酶(Luciferase)小鼠T细胞白血病/淋巴瘤细胞系田L4),在细胞水平检测其生物发光能力;建立发光淋巴瘤动物模型,在整体动物水平观察肿瘤的生长及转移。方法通过阳离子脂质体法将含荧光素酶tuc)基因和...目的制备稳定表达萤火虫荧光素酶(Luciferase)小鼠T细胞白血病/淋巴瘤细胞系田L4),在细胞水平检测其生物发光能力;建立发光淋巴瘤动物模型,在整体动物水平观察肿瘤的生长及转移。方法通过阳离子脂质体法将含荧光素酶tuc)基因和绿色荧光蛋白(GFP)基因的慢病毒载体四质粒系统共转染入病毒包装细胞293T,24h后在荧光显微镜下观察GFP表达情况,监测转染效率。72h收集病毒上清,浓缩后以MOI=8感染EL4细胞,在荧光显微镜下和应用流式细胞仪(FACS)观察感染情况。通过流式细胞分选仪无菌条件下筛选出表达GFP的EL4细胞.进行大规模扩增培养并对转染前后的细胞进行生物特性分析和比较。在体外用活体成像技术(in vivo imaging)评价其稳定发光能力。C57BL/6小鼠皮下和尾静脉接种发光细胞,构建淋巴瘤小鼠模型,活体内观察肿瘤的生长和转移情况。结果慢病毒载体系统转染293T细胞24h后在荧光显微镜下观察到GFP表达,病毒滴度测定为8.4×10^7 Tu/ml。感染EL4细胞后,荧光显微镜下观察到GFP的表达,FACS分析转导效率为96.5%。筛选转染后的稳定克隆并扩增细胞,分析其生物学特性与EL4细胞无明显差异(P〉0.05)。活体成像系统分析感染后的EL4细胞释放的光子量与细胞数量成正相关(R^2=0.9896)。利用活体成像观察到了皮下移植瘤的生长,并且光子强度随肿瘤的增大而增强;尾静脉接种小鼠后通过活体成像,能在不同时期动态观察到肿瘤的组织、器官转移。结论我们成功制备了荧光素酶标记的EL4细胞并且构建了生物发光淋巴瘤动物模型。该模型可以非侵入性地动态检测活体内白血病/淋巴瘤的演进过程,为示踪肿瘤体内生长、转移,研究肿瘤发展机制及最佳治疗策略的选择提供了新的手段和工具。展开更多
基金supported by National Basic Research Program of China (973 Program) (No.2011CB707702)National Natural Science Foundation of China (No.81090272, No.81000632, and No.30900334)+1 种基金Shaanxi Provincial Natural Science Foundation Research Project (No.2009JQ8018)Fundamental Research Funds for the Central Universities
文摘In this contribution, we present an all-optical quantitative framework for bioluminescence tomography with non-contact measurement. The framework is comprised of four indispensable steps: extraction of the geometrical structures of the subject, light flux reconstruction on arbitrary surface, calibration and quantification of the surface light flux and internal bioluminescence reconstruction. In particular, the geometrical structures are retrieved using a completely optical method and captured under identical viewing conditions with the bioluminescent images. As a result, the proposed framework avoids the utilization of computed tomography or magnetic resonance imaging to provide the geometrical structures. On the basis of experimental measurements, we evaluate the performance of the proposed all-optical quantitative framework using a mouse shaped phantom. Preliminary result reveals the potential and feasibility of the proposed framework for bioluminescence tomography.
文摘目的制备稳定表达萤火虫荧光素酶(Luciferase)小鼠T细胞白血病/淋巴瘤细胞系田L4),在细胞水平检测其生物发光能力;建立发光淋巴瘤动物模型,在整体动物水平观察肿瘤的生长及转移。方法通过阳离子脂质体法将含荧光素酶tuc)基因和绿色荧光蛋白(GFP)基因的慢病毒载体四质粒系统共转染入病毒包装细胞293T,24h后在荧光显微镜下观察GFP表达情况,监测转染效率。72h收集病毒上清,浓缩后以MOI=8感染EL4细胞,在荧光显微镜下和应用流式细胞仪(FACS)观察感染情况。通过流式细胞分选仪无菌条件下筛选出表达GFP的EL4细胞.进行大规模扩增培养并对转染前后的细胞进行生物特性分析和比较。在体外用活体成像技术(in vivo imaging)评价其稳定发光能力。C57BL/6小鼠皮下和尾静脉接种发光细胞,构建淋巴瘤小鼠模型,活体内观察肿瘤的生长和转移情况。结果慢病毒载体系统转染293T细胞24h后在荧光显微镜下观察到GFP表达,病毒滴度测定为8.4×10^7 Tu/ml。感染EL4细胞后,荧光显微镜下观察到GFP的表达,FACS分析转导效率为96.5%。筛选转染后的稳定克隆并扩增细胞,分析其生物学特性与EL4细胞无明显差异(P〉0.05)。活体成像系统分析感染后的EL4细胞释放的光子量与细胞数量成正相关(R^2=0.9896)。利用活体成像观察到了皮下移植瘤的生长,并且光子强度随肿瘤的增大而增强;尾静脉接种小鼠后通过活体成像,能在不同时期动态观察到肿瘤的组织、器官转移。结论我们成功制备了荧光素酶标记的EL4细胞并且构建了生物发光淋巴瘤动物模型。该模型可以非侵入性地动态检测活体内白血病/淋巴瘤的演进过程,为示踪肿瘤体内生长、转移,研究肿瘤发展机制及最佳治疗策略的选择提供了新的手段和工具。