We report on the fabrication and characterization of multi-leg bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) thermoelectric devices. The two materials were deposited, on top of SiO2/Si substrates, using P...We report on the fabrication and characterization of multi-leg bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) thermoelectric devices. The two materials were deposited, on top of SiO2/Si substrates, using Pulsed Laser Deposition (PLD). The SiO2 layer was used to provide insulation between the devices and the Si wafer. Copper was used as an electrical connector and a contact for the junctions. Four devices were built, where the Bi2Te3 and Sb2Te3 were deposited at substrate temperatures of 100°C, 200°C, 300°C and 400°C. The results show that the device has a voltage sensitivity of up to 146 μV/K and temperature sensitivity of 6.8 K/mV.展开更多
We have developed a novel thermoelectric gas sensors based on bismuth telluride thin films.These sensors were employed for sensing different concentrations of H_2 gas.Radio frequency (R.F.) magnetron sputtering was em...We have developed a novel thermoelectric gas sensors based on bismuth telluride thin films.These sensors were employed for sensing different concentrations of H_2 gas.Radio frequency (R.F.) magnetron sputtering was employed to deposit the bismuth telluride (Bi_2Te_3) thin films.The morphology of such thin films was investigated and responses of the thermoelectric devices to H_2 were studied.展开更多
In this manuscript a comparative study on Bi<sub>2</sub>O<sub>3</sub>/polystyrene and Bi<sub>2</sub>O<sub>3</sub>/PVDF composites has been executed via analysis of struc...In this manuscript a comparative study on Bi<sub>2</sub>O<sub>3</sub>/polystyrene and Bi<sub>2</sub>O<sub>3</sub>/PVDF composites has been executed via analysis of structural, bonding, surface morphology and dielectric response of composites for energy storage. The composites have been synthesized using solution cast method by varying concentrations of Bi<sub>2</sub>O<sub>3</sub> (BO = 1 - 5 mw%) into polystyrene (PS) and polyvinylidene fluoride (PVDF) polymers respectively. X-ray diffraction confirms the generation of crystallinity, Fourier transform infrared (FT-IR) spectroscopy confirms bonding behavior and scanning electron microscopy (SEM) confirms uniform distribution of Bi<sub>2</sub>O<sub>3</sub> (BO) in PS and PVDF polymers. Impedance spectroscopy has been employed for determination of dielectric response of the fabricated composites. The dielectric constant has been found to be increased as 1.4 times of pristine PS to BO<sub>5%</sub>PS<sub>95%</sub> composites and 1.8 times of pristine PVDF to BO<sub>5%</sub>PVDF<sub>95%</sub> composites respectively. These high dielectric composite electrodes are useful for flexible energy storage devices.展开更多
用溶剂热法合成了二元Bi2Te3和三元Bi1.3Sn0.7Te3合金纳米粉末,并采用热压技术制备了块状热电材料。XRD分析结果表明:Bi Sn Te三元固溶体合金可以直接通过溶剂热合成获得单相产物,而非掺杂Bi2Te3合金需要通过热压等后热处理来实现产物...用溶剂热法合成了二元Bi2Te3和三元Bi1.3Sn0.7Te3合金纳米粉末,并采用热压技术制备了块状热电材料。XRD分析结果表明:Bi Sn Te三元固溶体合金可以直接通过溶剂热合成获得单相产物,而非掺杂Bi2Te3合金需要通过热压等后热处理来实现产物的单一化;热压过程有助于促进反应的完全和晶型的完整,但会导致晶粒的长大。对试样电导率σ和Seebeck系数α的测量结果显示,Bi Sn Te三元固溶体合金比二元Bi Te合金具有更好的电学性能。展开更多
文摘We report on the fabrication and characterization of multi-leg bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) thermoelectric devices. The two materials were deposited, on top of SiO2/Si substrates, using Pulsed Laser Deposition (PLD). The SiO2 layer was used to provide insulation between the devices and the Si wafer. Copper was used as an electrical connector and a contact for the junctions. Four devices were built, where the Bi2Te3 and Sb2Te3 were deposited at substrate temperatures of 100°C, 200°C, 300°C and 400°C. The results show that the device has a voltage sensitivity of up to 146 μV/K and temperature sensitivity of 6.8 K/mV.
文摘We have developed a novel thermoelectric gas sensors based on bismuth telluride thin films.These sensors were employed for sensing different concentrations of H_2 gas.Radio frequency (R.F.) magnetron sputtering was employed to deposit the bismuth telluride (Bi_2Te_3) thin films.The morphology of such thin films was investigated and responses of the thermoelectric devices to H_2 were studied.
文摘In this manuscript a comparative study on Bi<sub>2</sub>O<sub>3</sub>/polystyrene and Bi<sub>2</sub>O<sub>3</sub>/PVDF composites has been executed via analysis of structural, bonding, surface morphology and dielectric response of composites for energy storage. The composites have been synthesized using solution cast method by varying concentrations of Bi<sub>2</sub>O<sub>3</sub> (BO = 1 - 5 mw%) into polystyrene (PS) and polyvinylidene fluoride (PVDF) polymers respectively. X-ray diffraction confirms the generation of crystallinity, Fourier transform infrared (FT-IR) spectroscopy confirms bonding behavior and scanning electron microscopy (SEM) confirms uniform distribution of Bi<sub>2</sub>O<sub>3</sub> (BO) in PS and PVDF polymers. Impedance spectroscopy has been employed for determination of dielectric response of the fabricated composites. The dielectric constant has been found to be increased as 1.4 times of pristine PS to BO<sub>5%</sub>PS<sub>95%</sub> composites and 1.8 times of pristine PVDF to BO<sub>5%</sub>PVDF<sub>95%</sub> composites respectively. These high dielectric composite electrodes are useful for flexible energy storage devices.
文摘用溶剂热法合成了二元Bi2Te3和三元Bi1.3Sn0.7Te3合金纳米粉末,并采用热压技术制备了块状热电材料。XRD分析结果表明:Bi Sn Te三元固溶体合金可以直接通过溶剂热合成获得单相产物,而非掺杂Bi2Te3合金需要通过热压等后热处理来实现产物的单一化;热压过程有助于促进反应的完全和晶型的完整,但会导致晶粒的长大。对试样电导率σ和Seebeck系数α的测量结果显示,Bi Sn Te三元固溶体合金比二元Bi Te合金具有更好的电学性能。