Black phosphorus(BP)nano-materials,especially BP quantum dots(BPQDs),performs outstanding photothermal antitumor effects,excellent biocompatibility and biodegradability.However,there are several challenges to overcome...Black phosphorus(BP)nano-materials,especially BP quantum dots(BPQDs),performs outstanding photothermal antitumor effects,excellent biocompatibility and biodegradability.However,there are several challenges to overcome before offering real benefits,such as poor stability,poor dispersibility as well as difficulty in tailoring other functions.Here,a“three-in-one”mitochondria-targeted BP nano-platform,called as BPQD-PEG-TPP,was designed.In this nano-platform,BPQDs were covalently grafted with a heterobifunctional PEG,in which one end was an aryl diazo group capable of reacting with BPQDs to form a covalent bond and the other end was a mitochondria-targeted triphenylphosphine(TPP)group.In addition to its excellent near-infrared photothermal properties,BPQD-PEG-TPP had much enhanced stability and dispersibility under physiological conditions,efficient mitochondria targeting and promoted ROS production through a photothermal effect.Both in vitro and in vivo experiments demonstrated that BPQD-PEG-TPP performed much superior photothermal cytotoxicity than BPQDs and BPQD-PEG as the mitochondria targeted PTT.Thus this“three-in-one”nanoplatform fabricated through polymer grafting,with excellent stability,dispersibility and negligible side effects,might be a promising strategy for mitochondria-targeted photothermal cancer therapy.展开更多
In this work,a novel dual Z-scheme Bi_(2)WO_(6)/g-C_(3)N_(4)/black phosphorus quantum dots(Bi_(2)WO_(6)/g-C_(3)N_(4)/BPQDs)composites were fabricated and utilized towards photocatalytic degradation of bisphenol A(BPA)...In this work,a novel dual Z-scheme Bi_(2)WO_(6)/g-C_(3)N_(4)/black phosphorus quantum dots(Bi_(2)WO_(6)/g-C_(3)N_(4)/BPQDs)composites were fabricated and utilized towards photocatalytic degradation of bisphenol A(BPA)under visible-light irradiation.Optimizing the content of g-C_(3)N_(4) and BPQDs in Bi_(2)WO_(6)/g-C_(3)N_(4)/BPQDs composites to a suitable mass ratio can enhance the visible-light harvesting capacity and increase the charge separation efficiency and the transfer rate of excited-state electrons and holes,resulting in much higher photocatalytic activity for BPA degradation(95.6%,at 20 mg/L in 120 min)than that of Bi2WO6(63.7%),g-C_(3)N_(4)(25.0%),BPQDs(8.5%),and Bi_(2)WO_(6)/g-C_(3)N_(4)(79.6%),respectively.Radical trapping experiments indicated that photogenerated holes(h+)and superoxide radicals(•O_(2)−)played crucial roles in photocatalytic BPA degradation.Further,the possible degradation pathway and photocatalytic mechanism was proposed by analyzing the BPA intermediates.Thiswork also demonstrated that the Bi2WO6/g-C_(3)N_(4)/BPQDs as effective photocatalystswas stable and have promising potential to remove environmental contaminants from real water samples.展开更多
Black phosphorus quantum dots(BPQDs)are synthesized and combined with graphene sheet.The fabricated BPQDs/graphene devices are capable of detecting visible and near infrared radiation.The adsorption efect of BPQDs in ...Black phosphorus quantum dots(BPQDs)are synthesized and combined with graphene sheet.The fabricated BPQDs/graphene devices are capable of detecting visible and near infrared radiation.The adsorption efect of BPQDs in graphene is clarifed by the relationship of the photocurrent and the shift of the Dirac point with diferent substrate.The Dirac point moves toward a neutral point under illumination with both SiO_(2)/Si and Si(3)N_(4)/Si substrates,indicating an anti-doped feature of photo-excitation.To our knowledge,this provides the frst observation of photoresist induced photocurrent in such systems.Without the infuence of the photoresist the device can respond to infrared light up to 980 nm wavelength in vacuum in a cryostat,in which the photocurrent is positive and photoconduction efect is believed to dominate the photocurrent.Finally,the adsorption efect is modeled using a frst-principle method to give a picture of charge transfer and orbital contribution in the interaction of phosphorus atoms and single-layer graphene.展开更多
基金We are grateful for the financial support from National Natural Science Foundation of China(51703258,81772449 and 81971081)Guangzhou science technology and innovation commission(201804010309 and 201803010090)Science,Technology&Innovation Commission of Shenzhen Municipality(JCYJ20180307154606793 and JCYJ20180507181654186).
文摘Black phosphorus(BP)nano-materials,especially BP quantum dots(BPQDs),performs outstanding photothermal antitumor effects,excellent biocompatibility and biodegradability.However,there are several challenges to overcome before offering real benefits,such as poor stability,poor dispersibility as well as difficulty in tailoring other functions.Here,a“three-in-one”mitochondria-targeted BP nano-platform,called as BPQD-PEG-TPP,was designed.In this nano-platform,BPQDs were covalently grafted with a heterobifunctional PEG,in which one end was an aryl diazo group capable of reacting with BPQDs to form a covalent bond and the other end was a mitochondria-targeted triphenylphosphine(TPP)group.In addition to its excellent near-infrared photothermal properties,BPQD-PEG-TPP had much enhanced stability and dispersibility under physiological conditions,efficient mitochondria targeting and promoted ROS production through a photothermal effect.Both in vitro and in vivo experiments demonstrated that BPQD-PEG-TPP performed much superior photothermal cytotoxicity than BPQDs and BPQD-PEG as the mitochondria targeted PTT.Thus this“three-in-one”nanoplatform fabricated through polymer grafting,with excellent stability,dispersibility and negligible side effects,might be a promising strategy for mitochondria-targeted photothermal cancer therapy.
基金supported by the National Natural Science Foundation of China (No. 21964006)the Hunan Provincial Natural Science Foundation of China (No. 2020JJ4640)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department (No. 20A050)the Scientific Research Found of Changsha University (No. SF1934)
文摘In this work,a novel dual Z-scheme Bi_(2)WO_(6)/g-C_(3)N_(4)/black phosphorus quantum dots(Bi_(2)WO_(6)/g-C_(3)N_(4)/BPQDs)composites were fabricated and utilized towards photocatalytic degradation of bisphenol A(BPA)under visible-light irradiation.Optimizing the content of g-C_(3)N_(4) and BPQDs in Bi_(2)WO_(6)/g-C_(3)N_(4)/BPQDs composites to a suitable mass ratio can enhance the visible-light harvesting capacity and increase the charge separation efficiency and the transfer rate of excited-state electrons and holes,resulting in much higher photocatalytic activity for BPA degradation(95.6%,at 20 mg/L in 120 min)than that of Bi2WO6(63.7%),g-C_(3)N_(4)(25.0%),BPQDs(8.5%),and Bi_(2)WO_(6)/g-C_(3)N_(4)(79.6%),respectively.Radical trapping experiments indicated that photogenerated holes(h+)and superoxide radicals(•O_(2)−)played crucial roles in photocatalytic BPA degradation.Further,the possible degradation pathway and photocatalytic mechanism was proposed by analyzing the BPA intermediates.Thiswork also demonstrated that the Bi2WO6/g-C_(3)N_(4)/BPQDs as effective photocatalystswas stable and have promising potential to remove environmental contaminants from real water samples.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.61922022,62175026,62171094,and 62104026)。
文摘Black phosphorus quantum dots(BPQDs)are synthesized and combined with graphene sheet.The fabricated BPQDs/graphene devices are capable of detecting visible and near infrared radiation.The adsorption efect of BPQDs in graphene is clarifed by the relationship of the photocurrent and the shift of the Dirac point with diferent substrate.The Dirac point moves toward a neutral point under illumination with both SiO_(2)/Si and Si(3)N_(4)/Si substrates,indicating an anti-doped feature of photo-excitation.To our knowledge,this provides the frst observation of photoresist induced photocurrent in such systems.Without the infuence of the photoresist the device can respond to infrared light up to 980 nm wavelength in vacuum in a cryostat,in which the photocurrent is positive and photoconduction efect is believed to dominate the photocurrent.Finally,the adsorption efect is modeled using a frst-principle method to give a picture of charge transfer and orbital contribution in the interaction of phosphorus atoms and single-layer graphene.