期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Extraction of Valuable Metals from Titanium-bearing Blast Furnace Slag by Acid Leaching
1
作者 刘燕 CHEN Xuegui +2 位作者 MAO Shuaidong XIAO Yadong LI Jiacong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期376-385,共10页
To realize the resource utilization of the valuable metals in the titanium-containing blast furnace slag,the process route of “hydrochloric acid leaching-electrolysis-carbonization and carbon dioxide capture-preparat... To realize the resource utilization of the valuable metals in the titanium-containing blast furnace slag,the process route of “hydrochloric acid leaching-electrolysis-carbonization and carbon dioxide capture-preparation of calcium carbonate” was proposed.In this study,the influences of process conditions on the leaching rates of calcium,magnesium,aluminum,and iron and the phases of the leaching residue were investigated for the leaching process.The experimental results show that the HCl solution could selectively leach the elements from the titanium-containing blast furnace slag.The better leaching conditions are the HCl solution concentration of 4 mol/L,the leaching time of 30 min,the ratio of liquid volume to solid gas of 10 mL/g,and the stirring paddle speed of 300 r/min.Under the conditions,the leaching rates of calcium,magnesium,aluminum,and iron can reach 85.87%,73.41%,81.35%,and 59.08%,and the leaching rate of titanium is 10.71%.The iron and the aluminum are removed from the leachate to obtain iron-aluminum water purification agents,and the magnesium is removed from the leachate to obtain magnesium hydroxide.The leaching residue phase is dominated by perovskite,followed by magnesium silicate and tricalcium aluminate,and the titaniumrich material could be obtained from the leaching residue by desiliconization. 展开更多
关键词 titanium-containing blast furnace slag acid leaching valuable metals comprehensive utilization
原文传递
Synthesis,Characterization of NaA Zeolite from Blast Furnace Slag(BFS)via Alkaline Fusion and Hydrothermal Treatment
2
作者 LI Changxin LI Xiaoya +1 位作者 LI Chaoyang LI Li 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期401-407,共7页
A blast furnace slag zeolite(BFSZ)material was successfully synthesized from BFS by alkaline fusion and hydrothermal treatment.Via the analyses of XRD,FT-IR,FE-SEM,XRF,CEC and BET surface area measurement,when zeolite... A blast furnace slag zeolite(BFSZ)material was successfully synthesized from BFS by alkaline fusion and hydrothermal treatment.Via the analyses of XRD,FT-IR,FE-SEM,XRF,CEC and BET surface area measurement,when zeolite was synthesized at a crystallization temperature of 100℃with initial Si/Al ratio of 1:1,the main composition in the product is Na-A zeolite.Under the above conditions,the BFSZ was synthesized with CEC of 3.06 meq/g and maximum BET surface area of 37.55 m^(2)·g^(-1).Moreover,the incorporating of BFS-derived minor metals(such as Mg,Fe,and Ca)are found to be of little importance for the synthesis of BFSZ.Thus the obtained BFSZ material has a great adsorption performance for removing Mn^(2+),Cu^(2+),and NH_(4)^(+)ions diluted in water,owing to the higher CEC. 展开更多
关键词 blast furnace slag CONVERSION ZEOLITE CHARACTERIZATION ADSORPTION
原文传递
Efficient Use of Steel Slag in Alkali-Activated Blast Furnace Slag Based Geopolymer
3
作者 Yu Bai Lei Wang Ying Fang 《Journal of Renewable Materials》 EI 2023年第7期3129-3141,共13页
Energy shortage and the emission of greenhouse gases have become a global problem of urgent concern.Therefore,there is an urgent need to develop a low carbon building material.Geopolymers have become a hot topic due t... Energy shortage and the emission of greenhouse gases have become a global problem of urgent concern.Therefore,there is an urgent need to develop a low carbon building material.Geopolymers have become a hot topic due to their environmental sustainability and the feasibility of immobilizing industrial waste.In this paper,steel slag(SS)fines were investigated as auxiliary materials of blast furnace slag(BFS)based geopolymer.The hydration heat properties,flowability,compressive strength,sorptivity coefficient,X-ray diffraction(XRD),and scanning electron microscopy(SEM)of the geopolymer pastes were determined.The results showed that the incorporation of SS weakened the reactivity of the BFS-based geopolymer paste and improved the flow values of the paste.The compressive strength of the geopolymer with 20%SS content reached 117 MPa at 28 d.The geopolymer specimens with high compressive strength showed a low sorptivity coefficient.The microscopic results showed that the addition of the appropriate amount of SS reduced the cracks,improved the density of the geopolymer,and produced a geopolymer composite with excellent mechanical properties. 展开更多
关键词 blast furnace slag steel slag GEOPOLYMER ALKALI-ACTIVATED
下载PDF
Indirect mineral carbonation of blast furnace slag with(NH4)2SO4 as a recyclable extractant 被引量:9
4
作者 Jinpeng Hu Weizao Liu +8 位作者 Lin Wang Qiang Liu Fang Chen Hairong Yue Bin Liang Li Lü Ye Wang Guoquan Zhang Chun Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期927-935,共9页
Large quantities of CO_2 and blast furnace slag are discharged in the iron and steel industry. Mineral carbonation of blast furnace slag can offer substantial CO_2 emission reduction and comprehensive utilisation of t... Large quantities of CO_2 and blast furnace slag are discharged in the iron and steel industry. Mineral carbonation of blast furnace slag can offer substantial CO_2 emission reduction and comprehensive utilisation of the solid waste. In this study, a recyclable extractant,(NH_4)_2SO_4, was used to extract calcium and magnesium from blast furnace slag(main phases of gehlenite and akermanite) by using low-temperature roasting to fix CO_2 through aqueous carbonation. The process parameters and efficiency of the roasting extraction, mineralisation, and Al recovery were investigated in detail. The results showed that the extractions of Ca, Mg, and Al can reach almost 100% at an(NH4)_2SO_4-to-slag mass ratio of 3:1 and at 370°C in 1 h. Adjusting the p H value of the leaching solution of the roasted slag to 5.5 with the NH_3 released during the roasting resulted in 99% Al precipitation, while co-precipitation of Mg was lower than 2%. The Mg-rich leachate after the depletion of Al and the leaching residue(main phases of CaSO_4 and SiO_2) were carbonated using(NH_4)_2CO_3 and NH_4HCO_3 solutions, respectively, under mild conditions. Approximately 99% of Ca and 89% of Mg in the blast furnace slag were converted into CaCO_3 and(NH_4)_2 Mg(CO_3)_2·4 H_2O,respectively. The latter can be selectively decomposed to magnesium carbonate at 100-200 °C to recover the NH_3 for reuse. In the present route, the total CO_2 sequestration capacity per tonne of blast furnace slag reached up to 316 kg, and 313 kg of Al-rich precipitate, 1000 kg of carbonated product containing CaCO_3 and SiO_2, and 304 kg of carbonated product containing calcium carbonate and magnesium carbonate were recovered simultaneously. These products can be used, respectively, as raw materials for the production of electrolytic aluminium, cement, and light magnesium carbonate to replace natural resources. 展开更多
关键词 blast furnace slag CO2 Mineral carbonation CO2 sequestration
下载PDF
Simultaneous preparation of TiO2 and ammonium alum,and microporous SiO2 during the mineral carbonation of titanium-bearing blast furnace slag 被引量:8
5
作者 Yingjie Xiong Tahani Aldahri +6 位作者 Weizao Liu Guanrun Chu Guoquan Zhang Dongmei Luo Hairong Yue Bin Liang Chun Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第9期2256-2266,共11页
In this study,a route for simultaneous mineralization of CO2 and production of titanium dioxide and ammonium alum,and microporous silicon dioxide from titanium-bearing blast furnace slag(TBBF slag)was proposed,which i... In this study,a route for simultaneous mineralization of CO2 and production of titanium dioxide and ammonium alum,and microporous silicon dioxide from titanium-bearing blast furnace slag(TBBF slag)was proposed,which is comprised of(NH4)2 S04 roasting,acid leaching,ammonium alum crystallization,silicic acid flocculation and Ti hydrolysis.The effects of relevant process parameters were systematically investigated.The re sults showed that under the optimal roasting and leaching conditions about 85%of titanium and 84.6%of aluminum could be extracted while only 30%of silicon entered the leachate.84%of Al^3+was crystallized from the leachate in the form of ammonium aluminum sulfate dodecahydrate with a purity up to 99.5 wt%.About 85%of the soluble silicic acid was flocculated with the aid of secondary alcohol polyoxyethylene ether 9(AEO-9)to yield a microporous SiO2 material(97.4 wt%)from the crystallized mother liquor.The Al-and Si-depleted solution was then hydrolyzed to generate a titanium dioxide(99.1 wt%)with uniform particle size distribution.It was figured out that approximately 146 kg TiO2 could be produced from 1000 kg of TBBF slag.Therefore,the improved process is a promising method for industrial application. 展开更多
关键词 CO2 mineralization Titanium-bearing blast furnace slag Ammonium sulfate FLOCCULATION Titanium dioxide
下载PDF
Determination of dielectric properties of titanium carbide fabricated by microwave synthesis with Ti-bearing blast furnace slag 被引量:4
6
作者 Peng Liu Li-bo Zhang +3 位作者 Bing-guo Liu Guang-jun He Jin-hui Peng Meng-yang Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第1期88-97,共10页
The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery;it can alleviate the en... The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery;it can alleviate the environmental pressure caused by slag stocking.The dynamic dielectric parameters of Ti-bearing blast furnace slag/pulverized coal mixture under high-temperature heating are measured by the cylindrical resonant cavity perturbation method.Combining the transient dipole and large π bond delocalization polarization phenomena, the interaction mechanism of the microwave macroscopic non-thermal effect on the titanium carbide synthesis reaction was revealed.The material thickness range during microwave heating was optimized by the joint analysis of penetration depth and reflection loss, which is of great significance to the design of the microwave reactor for the carbothermal reduction of Ti-bearing blast furnace slag. 展开更多
关键词 titanium-bearing blast furnace slag dielectric mechanism penetration depth reflection loss microwave heating EFFICIENCY
下载PDF
Recent progress of efficient utilization of titanium-bearing blast furnace slag 被引量:4
7
作者 Yongfeng Cai Ningning Song +3 位作者 Yunfei Yang Lingmin Sun Peng Hu Jinshu Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第1期22-31,共10页
Titanium-bearing blast furnace slag(BFS)has valuable compositions and potential environmental hazardousness.Thus,developing efficient and green approaches to utilize BFS is highly desired for resource economization an... Titanium-bearing blast furnace slag(BFS)has valuable compositions and potential environmental hazardousness.Thus,developing efficient and green approaches to utilize BFS is highly desired for resource economization and environmental protection.In the past decades,many attempts have been adopted to reuse BFS efficiently,and significant advances in understanding the fundamental features and the development of efficient approaches have been achieved.This review provides a comprehensive overview of the latest progress on the efficient utilization of BFS and discusses the mechanism and characteristics of various approaches,along with their application prospects.In particular,the extraction and enrichment of titanium-bearing phases from BFS are highlighted because of the high availability of titanium resources.This systemic and comprehensive review may benefit the design of new and green utilization routes with high efficiency and low cost. 展开更多
关键词 titanium-bearing blast furnace slag utilization approach enrichment process extracting titanium MECHANISM
下载PDF
Antibacterial Properties of V-doped Titanium-bearing Blast Furnace Slag Prepared at Different Calcination Temperatures 被引量:2
8
作者 王辉 杨合 +1 位作者 薛向欣 刘东 《过程工程学报》 CAS CSCD 北大核心 2010年第5期1025-1029,共5页
Perovskite-type V-doped titanium-bearing blast furnace slag (VTBBFS) photocatalyst was prepared by high-temperature solid phase method.The influence of calcination temperature on the photocatalytic and antibacterial p... Perovskite-type V-doped titanium-bearing blast furnace slag (VTBBFS) photocatalyst was prepared by high-temperature solid phase method.The influence of calcination temperature on the photocatalytic and antibacterial properties of VTBBFS was studied in details.Its composition and microstructure were evaluated by X-ray diffractometer,ultraviolet-visible absorption spectrometer,Fourier transform infrared spectrometer and scanning electron microscope.The antibacterial properties of VTBBFS to Candida albicans were investigated by flask oscillation method.The results showed that the optical absorption and antibacterial properties of VTBBFS were the best with 10%(ω) doping of vanadium,prepared at 800℃ for 2 h,and its sterilization rate was close to 100% to Candida albicans (ATCC10231).The minimum inhibitory and minimum bactericidal concentrations were 25 and 50 mg/mL.When the concentration was 0.2 μg/mL,the catalyst had the least toxic toxicity. 展开更多
关键词 V doping titanium-bearing blast furnace slag PHOTOCATALYST antibacterial activity calcination temperature
下载PDF
Technology status and development of mineral wool made of blast furnace slag 被引量:4
9
作者 XIAO Yongli,LI Yongqian and LIU Yin Research Institute,Baoshan Iron & Steel Co.,Ltd.,Shanghai 201900,China 《Baosteel Technical Research》 CAS 2010年第S1期137-,共1页
Under the trend of low-carbon economy,the technique of producing mineral wool insulation material from molten blast furnace slag are of great significance both to Insulation materials industry and metallurgical indust... Under the trend of low-carbon economy,the technique of producing mineral wool insulation material from molten blast furnace slag are of great significance both to Insulation materials industry and metallurgical industry on the aspects of energy conservation and emissions reduction.This paper presents characteristics and use of mineral wool made of blast furnace slag,and also introduces mineral wool production process and key techniques.It also put forward a number of issues need to be addressed in the process.The inherent mechanism affecting the performance of the of mineral wool is analyzed.And it points out the target and future direction of R & D in Baoshan Iron and Steel in mineral wool technology field. 展开更多
关键词 blast furnace slag mineral wool insulation material
下载PDF
Recovery of titanium,aluminum,magnesium and separating silicon from titanium-bearing blast furnace slag by sulfuric acid curing-leaching 被引量:2
10
作者 Long Wang Liang Chen +5 位作者 Weizao Liu Guoquan Zhang Shengwei Tang Hairong Yue Bin Liang Dongmei Luo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第9期1705-1714,共10页
An energy-efficient route was adopted to treat titanium-bearing blast furnace slag(TBBFS)in this study.Titanium,aluminum,and magnesium were simultaneously extracted and silicon was separated by low temperature sulfuri... An energy-efficient route was adopted to treat titanium-bearing blast furnace slag(TBBFS)in this study.Titanium,aluminum,and magnesium were simultaneously extracted and silicon was separated by low temperature sulfuric acid curing and low concentration sulfuric acid leaching.The process parameters of sulfuric acid curing TBBFS were systematically studied.Under the optimal conditions,the recovery of titanium,aluminum,and magnesium reached 85.96%,81.17%,and 93.82%,respectively.The rapid leaching model was used to limit the dissolution and polymerization of silicon,and the dissolution of silicon was only 3.18%.The mechanism of sulfuric acid curing-leaching was investigated.During the curing process,the reaction occurred rapidly and released heat massively.Under the attack of hydrogen ions,the structure of TBBFS was destroyed,silicate was depolymerized to form filterable silica,and titanium,magnesium,aluminum,and calcium ions were replaced to form sulfates and enriched on the surface of silica particles.Titanium,aluminum,and magnesium were recovered in the leaching solution,and calcium sulfate and silica were enriched in the residue after leaching.This method could effectively avoid the formation of silica sol during the leaching process and accelerate the solid-liquid separation. 展开更多
关键词 titanium-bearing blast furnace slag sulfuric acid curing SILICON mechanism
下载PDF
Abrasion Resistance of Cement Paste with Granulated Blast Furnace Slag and Its Relations to Microhardness and Microstructure
11
作者 陈晓润 何真 +3 位作者 CAI Xinhua ZHAO Rixu HU Lingling CHEN Hongren 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第3期410-415,共6页
The abrasion resistance of cement pastes with 30 wt%,40 wt%and 50 wt%granulated blast furnace slag(GBFS),and its relations to microhardness and microstructure like hydration products and pore structure were studied.Re... The abrasion resistance of cement pastes with 30 wt%,40 wt%and 50 wt%granulated blast furnace slag(GBFS),and its relations to microhardness and microstructure like hydration products and pore structure were studied.Results indicated that GBFS decreased the abrasion resistance of paste,and among the pastes with GBFS,the paste with 40 wt%GBFS showed the highest abrasion resistance.The microhardness of GBFS was lower than that of the cement,and the microhardness of the hydration products in paste with GBFS was also lower than that of the hydration products in paste without GBFS,so that the abrasion resistance of paste decreased when GBFS was incorporated.The reason for the decrease of microhardness of pastes with GBFS was that the contents of Ca(OH)_(2)in pastes with GBFS was significantly lower than that in the paste without GBFS,while large amounts of calcium aluminate hydrates and hydrotalcite-like phases(HT)in pastes with GBFS were generated.Furthermore,among the pastes with GBFS,the paste with 40 wt%GBFS showed the lowest porosity which was the main reason for its highest abrasion resistance. 展开更多
关键词 PASTE abrasion resistance granulated blast furnace slag MICROHARDNESS MICROSTRUCTURE
原文传递
Process and property optimization of ceramsite preparation by Bayan Obo tailings and blast furnace slag
12
作者 Yi-fan Chai Wen-xian Hu +3 位作者 Yun-hao Zhang Yi-ci Wang Jun Peng Sheng-li An 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第7期1381-1389,共9页
The ceramsite was prepared by using Bayan Obo tailings and blast furnace slag of Baotou Steel as the main raw materials and coal gangue as pore-forming agent,and the process system and the performance of ceramsite wer... The ceramsite was prepared by using Bayan Obo tailings and blast furnace slag of Baotou Steel as the main raw materials and coal gangue as pore-forming agent,and the process system and the performance of ceramsite were optimized.The phase transformation rules of the ceramsite prepared by multi-source solid waste in sintering method were clarified.The influence of sintering process parameters on ceramsite performance and the purification effect of ceramsite on ammonia nitrogen wastewater were revealed.The results show that the reasonable proportion of raw materials for preparing ceramsite is 60%tailings,35%blast furnace slag and 5%coal gangue.The reasonable preparation process of ceramsite is preheating at 350℃ for 12 min,increasing the temperature to 750℃ and holding for 60 min,then increasing the temperature to 1130℃ and roasting for 20 min.The cooling method is to cool down with the furnace.The prepared ceramsite has compressive strength of 1.89 MPa,porosity of 51.31%,water absorption of 31.42%,and bulk density of 1.94 g/cm^(3).When the ceramsite is used to treat ammonia nitrogen wastewater,the removal rate of ammonia nitrogen is 47.33%. 展开更多
关键词 Bayan Obo tailing blast furnace slag CERAMSITE Solid waste Comprehensive utilization
原文传递
Preparation of high acidity coefficient slag wool fiber with blast furnace slag and modifying agents
13
作者 Wen-chao He Ming-shuai Luo +6 位作者 Yin Deng Yue-lin Qin Shuo Zhang Xue-wei Lv Yong Zhao Cheng-zhe Jiang Zheng-de Pang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第7期1440-1450,共11页
Preparation of high acidity coefficient slag wool fiber with molten slag and modifying agents is considered to be a positive approach for value-added utilization of blast furnace slag. In order to achieve the multi-pu... Preparation of high acidity coefficient slag wool fiber with molten slag and modifying agents is considered to be a positive approach for value-added utilization of blast furnace slag. In order to achieve the multi-purposes of fiber-forming, energy saving, and waste heat recovery, the modifying agents that can improve the acidity coefficient of slag effectively, economically, and environmentally were investigated. Three agents with different acidity coefficients were adopted to modify slag and manufacture wool fibers. The effect of agent and slag proportion on the melting temperature and viscosity of molten slag was studied at a fixed acidity coefficient of 1.8 and 2.0. The results indicate that the sample modified with high acidity coefficient agent and high slag proportion has lower melting temperature and viscosity. The effect of agent and slag temperature on the fiber diameter was also investigated when the acidity coefficient of slag is 2.0. At a fixed slag proportion of 50 wt.%, the mean diameter decreases with increasing temperature and decreasing viscosity coefficient. Besides, the temperature drops caused by the addition of agents and energy consumption of samples for heating the slag were also analyzed. 展开更多
关键词 blast furnace slag slag wool fiber High acidity coefficient Modifying agent slag proportion
原文传递
Effect of w(MgO)/w(Al_(2)O_(3)) ratio and basicity on microstructure and metallurgical properties of blast furnace slag 被引量:2
14
作者 Wei-guo Kong Ji-hui Liu +2 位作者 Yao-wei Yu Xin-mei Hou Zhi-jun He 《Journal of Iron and Steel Research(International)》 SCIE EI CSCD 2021年第10期1223-1232,共10页
The CaO–SiO_(2)–Al_(2)O_(3)–MgO system is the main component unit in the slag formation process in blast furnace smelting.Its structural changes directly affect the high-temperature metallurgical properties of slag... The CaO–SiO_(2)–Al_(2)O_(3)–MgO system is the main component unit in the slag formation process in blast furnace smelting.Its structural changes directly affect the high-temperature metallurgical properties of slag.Molecular dynamics simulations were thus conducted to analyze the microstructure changes of the quaternary slag system under different basicities and w(MgO)/w(Al_(2)O_(3))ratios.The changes in w(MgO)/w(Al_(2)O_(3))ratio and basicity could affect the stability of each ion-oxygen.Increasing the basicity and w(MgO)/w(Al_(2)O_(3))ratio,the average coordination number of O surrounding Si atom only changed a little and remained approximately 4,indicating that Si exists as a stable structure of the[SiO4]4−tetrahedron in the slag structure,while the average coordination number of O surrounding Al atom changed greatly from 4 to 6,which indicated that the Al existence form could be transformed from[AlO_(4)]^(5−) tetrahedron to[AlO_(5)]^(7−) pentahedron and[AlO_(6)]^(9−) octahedron.Also,the diffusion rate of ions was accelerated with the increase in w(MgO)/w(Al_(2)O_(3))ratio and basicity.Moreover,the self-diffusion coefficients of each ion were obtained,and the magnitudes were observed to be in the following order:Mg^(2+)>Ca^(2+)>Al^(3+)>Si^(4+).The calculation and analysis of the slag viscosity and activation energy of viscous flow under different basicities and w(MgO)/w(Al_(2)O_(3))ratios revealed that the metallurgical properties of slag at high temperature depend on the flow-unit diffusivity and the microstructure stability,simultaneously,the basicity should be controlled between 1.0 and 1.2,and the w(MgO)/w(Al_(2)O_(3))ratio could be controlled between 0.45 and 0.55. 展开更多
关键词 blast furnace slag MICROSTRUCTURE BASICITY w(MgO)/w(Al_(2)O_(3))ratio Molecular dynamics
原文传递
Clayey soil stabilization using alkali-activated volcanic ash and slag 被引量:5
15
作者 Hania Miraki Nader Shariatmadari +3 位作者 Pooria Ghadir Soheil Jahandari Zhong Tao Rafat Siddique 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期576-591,共16页
Lime and Portland cement are the most widely used binders in soil stabilization projects.However,due to the high carbon emission in cement production,research on soil stabilization by the use of more environmentally-f... Lime and Portland cement are the most widely used binders in soil stabilization projects.However,due to the high carbon emission in cement production,research on soil stabilization by the use of more environmentally-friendly binders with lower carbon footprint has attracted much attention in recent years.This research investigated the potential of using alkali-activated ground granulated blast furnace slag(GGBS)and volcanic ash(VA)as green binders in clayey soil stabilization projects,which has not been studied before.The effects of different combinations of VA with GGBS,various liquid/solid ratios,different curing conditions,and different curing periods(i.e.7 d,28 d and 90 d)were investigated.Compressive strength and durability of specimens against wet-dry and freeze-thaw cycles were then studied through the use of mechanical and microstructural tests.The results demonstrated that the coexistence of GGBS and VA in geopolymerization process was more effective due to the synergic formation of N-A-S-H and C-(A)-S-H gels.Moreover,although VA needs heat curing to become activated and develop strength,its partial replacement with GGBS made the binder suitable for application at ambient temperature and resulted in a remarkably superior resistance against wet-dry and freeze-thaw cycles.The carbon embodied of the mixtures was also evaluated,and the results confirmed the low carbon footprints of the alkali-activated mixtures.Finally,it was concluded that the alkali-activated GGBS/VA could be promisingly used in clayey soil stabilization projects instead of conventional binders. 展开更多
关键词 Soil stabilization Alkali-activated material Volcanic ash(VA) Ground granulated blast furnace slag(GGBS) Curing condition DURABILITY
下载PDF
The Preparation of Porous Activated Slag Granules/TiO_(2)Photocatalyst and Its De-NO_(x)Performance
16
作者 朱立德 CHEN Jing +4 位作者 SI Heyang FANG Yongle WANG Xinyu WANG Zongsen 杨露 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第3期347-352,共6页
The porous structure and honeycombed structure of granulated blast furnace slag formed by alkali activation(AGBFS)can be used as a promising photocatalysts substrate for the photocatalytic removal of atmospheric or wa... The porous structure and honeycombed structure of granulated blast furnace slag formed by alkali activation(AGBFS)can be used as a promising photocatalysts substrate for the photocatalytic removal of atmospheric or water pollutants.In this study,photocatalytic activated slag granules were synthesized by loading TiO_(2)on AGBFS with immersion method.The physicochemical properties and NO_(x)removal performance of activated slag granules/TiO_(2)photocatalysts were studied by X-ray diffraction(XRD),scanning electron microscope(SEM)and photocatalytic performance test.The effects of slag particle sizes and nano-TiO_(2)loading concentrations on photocatalytic efficiencies of NO_(x)removal were also investigated.It was found that the De-NO_(x)performance of activated slag granules/TiO_(2)photocatalyst increased with the increasing of slag particle size in low TiO_(2)loading concentration situation,while increasing the TiO_(2)loading concentration would result in the opposite De-NO_(x)performance as slag size increased.Nevertheless,for the same size activated slag,the photocatalytic efficiency of activated slag granules/TiO_(2)photocatalyst gradually improved with the increase of loading concentration of TiO_(2). 展开更多
关键词 granulated blast furnace slag porous structure alkali-activation photocatalysis NO_(x)
原文传递
Evaluating Simultaneous Impact of Slag and Tire Rubber Powder on Mechanical Characteristics and Durability of Concrete
17
作者 Mostafa Amiri Farzad Hatami Emadaldin Mohammadi Golafshani 《Journal of Renewable Materials》 SCIE EI 2022年第8期2155-2177,共23页
In this experimental study,the impact of Portland cement replacement by ground granulated blast furnace slag(GGBFS)and micronized rubber powder(MRP)on the compressive,flexural,tensile strengths,and rapid chloride migr... In this experimental study,the impact of Portland cement replacement by ground granulated blast furnace slag(GGBFS)and micronized rubber powder(MRP)on the compressive,flexural,tensile strengths,and rapid chloride migration test(RCMT)of concrete were assessed.In this study,samples with different binder content and water to binder ratios,including the MRP with the substitution levels of 0%,2.5%and 5%,and the GGBFS with the substitution ratios of 0%,20%and 40%by weight of Portland cement were made.According to the results,in the samples containing slag and rubber powder in the early ages,on average,a 12.2%decrease in the mechanical characteristics of concrete was observed,nonetheless with raising the age of the samples,the impact of slag on reducing the porosity of concrete lowered the negative impact of rubber powder.Regarding durability characteristics,the RCMT results of the samples were enhanced by using rubber powder because of its insulation impact.Moreover,adding slag into the MRP-included mixtures results in a 23%reduction in the migration rate of the chloride ion averagely.At last,four mathematical statements were derived for the mechanical and durability of concrete containing the MRP and GGBFS utilizing the genetic programming method. 展开更多
关键词 Micronized rubber powder ground granulated blast furnace slag waste materials mechanical properties DURABILITY
下载PDF
Incorporation of a nanotechnology-based additive in cementitious products for clay stabilisation 被引量:3
18
作者 E.U.Eyo S.Ng’ambi S.J.Abbey 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第5期1056-1069,共14页
The mechanical performances and water retention characteristics of clays,stabilised by partial substitution of cement with by-products and inclusion of a nanotechnology-based additive called RoadCem(RC),are studied in... The mechanical performances and water retention characteristics of clays,stabilised by partial substitution of cement with by-products and inclusion of a nanotechnology-based additive called RoadCem(RC),are studied in this research.The unconfined compression tests and one-dimensional oedometer swelling were performed after 7 d of curing to understand the influence of addition of 1%of RC material in the stabilised soils with the cement partially replaced by 49%,59%and 69%of ground granulated blast furnace slag(GBBS)or pulverised fuel ash(PFA).The moisture retention capacity of the stabilised clays was also explored using the soil-water retention curve(SWRC)from the measured suctions.Results confirmed an obvious effect of the use of RC with the obtained strength and swell properties of the stabilised clays suitable for road application at 50%replacement of cement.This outcome is associated with the in-depth and penetrating hydration of the cementitious materials by the RC and water which results in the production of needle-like matrix with interlocking filaments e a phenomenon referred to as the‘wrapping’effect.On the other hand,the SWRC used to describe the water holding capacity and corresponding swell mechanism of clays stabilised by a proportion of RC showed a satisfactory response.The moisture retention of the RC-modified clays was initially higher but reduced subsequently as the saturation level increased with decreasing suction.This phenomenon confirmed that clays stabilised by including the RC are water-proof in nature,thus ensuring reduced porosity and suction even at reduced water content.Overall,the stabilised clays with the combination of cement,GGBS and RC showed a better performance compared to those with the PFA included. 展开更多
关键词 CEMENT Ground granulated blast furnace slag(GBBS) Fly ash RoadCem(RC) SWELL Stabilisation Unconfined compressive strength Soil-water retention curve(SWRC)
下载PDF
Effect of Content and Fineness of GGBS on Pore Structure of Cement Paste
19
作者 代金鹏 WANG Qicai +2 位作者 ZHANG Xin BI Ruixiao DU Wentao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第5期933-947,共15页
The effect of the content and specific surface area of the ground granulated blast furnace slag (GGBS) on the pore structure of the cement paste was determined through the low-field nuclear magnetic resonance (NMR).Th... The effect of the content and specific surface area of the ground granulated blast furnace slag (GGBS) on the pore structure of the cement paste was determined through the low-field nuclear magnetic resonance (NMR).The Pearson correlation analysis method was used to calculate the correlation coefficient between the porosity and age of cement paste,the specific surface area of GGBS and the content of GGBS.The test results exhibited that the porosity of the cement paste with different ageing durations gradually decreased on increasing the content and specific surface area of GGBS.The content and specific surface area of GGBS had a negligible effect on the 1-10 nm size gel pores in the cement paste,whereas,had a significant effect on the 10-100 nm size capillary pores.In addition,these parameters did not affect the final most probable pore size of the cement paste.The correlation between age and porosity was the largest,and the correlation between GGBS content and porosity was greater than that between GGBS specific surface area and porosity.Moreover,a modified pore structure model was successfully developed to effectively predict the pore structure of the GGBS based cement paste. 展开更多
关键词 ground granulated blast furnace slag pore structure FINENESS cement paste low-field nuclear magnetic resonance
原文传递
Utilization of Low-Alkalinity Cementitious Materials in Cemented Paste Backfill of Gold Mine Tailings
20
作者 Jiamao Li Chuimin Zhang +3 位作者 Lin Li Chuangang Fan Zhaofang He Yuandi Qian 《Journal of Renewable Materials》 SCIE EI 2022年第12期3439-3458,共20页
The purpose of this paper was to explore the possility of using low alkalinity cementitious materials as binders,in which ground blast furnace slag and fly ash acted as a partial replacement of ordinary Portland cemen... The purpose of this paper was to explore the possility of using low alkalinity cementitious materials as binders,in which ground blast furnace slag and fly ash acted as a partial replacement of ordinary Portland cement,and CaSO_(4),Na_(2)SO_(4),and CaO were used as a sulfate activator and alkali activated additives,to solidify gold mine tail-ings for preparation of a green,inexpensive cemented paste backill(CPB).For this target,the effects of cement/tailings ratio,superplasticizer dosage,solid content,tailings fineness on the mechanical properties of the CPB were inves tigated.Additionally,the hydration mechanism of the CPB was analyzed based on X-ray diffraction and scanning electron microscopy results.The results showed that the fuidity of the CPB slurry could be improved by adding polycarboxylic acid superplasticizer.The unconfined compressive strength(UCS)of the CPB specimens was increased with the increase of cement/tailings ratio and solid content.Under the same experi-mental conditions,the 28 d UCS of the CPB specimens was 3.8-4.9 times higher than that of ordinary Portland cement.The softening coefficient of the CPB specimens was increased with the increasing cement/tailings ratio,ranging from 0.83 to 0.92.The shrinkage rate of the CPB specimens was decreased from 0.70%to 0.54%with the increase of cement/tailings ratio from 1:12 to 1:4 The UCS of the full tailings CPB was the highest,followed by the fine tailings CPB specimens,and the UCS of the coarse tailings CPB specimens was the lowest.The low alka-linity binder was proved to be a promising material to improve the engineering performances of the CPB.The optimal mixing ratio is 1:6 cement/tailings ratio,0.15 wt% superplastizer dosage,and 70 wt%solid content.Pre-pared by this mixing ratio,the UCS values of the CPB after 3,7,and 28 d curing ages reached 1.85,5.87,and 9.16 MPa,respectively,which were suitable as CPB for the Zhaoyuan gold mine in terms of strength requirements. 展开更多
关键词 Cemented paste backill blast furnace slag fly ash engineering properties waste utilization
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部