期刊文献+
共找到180篇文章
< 1 2 9 >
每页显示 20 50 100
Failure characterization of fully grouted rock bolts under triaxial testing
1
作者 Hadi Nourizadeh Ali Mirzaghorbanali +3 位作者 Mehdi Serati Elamin Mutaz Kevin McDougall Naj Aziz 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期778-789,共12页
Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic st... Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism. 展开更多
关键词 Rock bolts Bolt-grout interface Bond strength Push test Triaxial tests
下载PDF
A hardening load transfer function for rock bolts and its calibration using distributed fiber optic sensing 被引量:2
2
作者 Assaf Klar Ori Nissim Itai Elkayam 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2816-2830,共15页
Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most o... Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most of which are based on the global rock bolt response evaluated in pull-out tests.This paper presents a laboratory experimental setup aiming to capture the rock formation effect,while using distributed fiber optic sensing to quantify the effect of the confinement and the reinforcement pull-out behavior on a more local level.It is shown that the behavior along the sample itself varies,with certain points exhibiting stress drops with crack formation.Some edge effects related to the kinematic freedom of the grout to dilate are also observed.Regardless,it was found that the mid-level response is quite similar to the average response along the sample.The ability to characterize the variation of the response along the sample is one of the many advantages high-resolution fiber optic sensing allows in such investigations.The paper also offers a plasticity-based hardening load transfer function,representing a"slice"of the anchor.The paper describes in detail the development of the model and the calibration/determination of its parameters.The suggested model captures well the coupled behavior in which the pull-out process leads to an increase in the confining stress due to dilative behavior. 展开更多
关键词 Rock bolts Distributed fiber optic sensing Pull-out tests Load transfer function Hardening model
下载PDF
Anchorage performance of large-diameter FRP bolts and their application in large deformation roadway
3
作者 Jun Han Zuoqing Bi +2 位作者 Bing Liang Chen Cao Shuangwen Ma 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第8期1037-1043,共7页
In underground coal mines, fibre reinforced polymer(FRP) bolt is ideal for mined rib reinforcements as it can prevent gas explosions caused by shearer frictional spark. With increasing mining depth, small diameter FRP... In underground coal mines, fibre reinforced polymer(FRP) bolt is ideal for mined rib reinforcements as it can prevent gas explosions caused by shearer frictional spark. With increasing mining depth, small diameter FRP bolts used in shallow underground mining cannot fulfil the rib support requirements. Under the engineering background of deep underground shortwall mining in Wudong coal mine, this paper systematically studies Φ27 mm FRP bolt support for large deformation coal rib. Specimens with a fan-shaped cross-section were used to enable the tensile testing of the bolt rod, the measured average tensile strength of the studied FRP bolt was(486.1 ± 9.6) MPa with a maximum elongation of 5.7%±0.6%.The shear strength of the bolt was measured as approximately 258 MPa using a self-made double shear testing apparatus. Based on the equivalent radial stiffness principle, a laboratory short encapsulation pullout test(SEPT) method for rib bolting has been developed undertaken consideration of the mechanical properties of the coal seam. Results showed that the average peak anchorage forces of the Φ27 mm FRP bolt and Φ20 mm steel rebar bolt were 108.4 and 66.4 k N, respectively, which were agreed with the theoretical calculations and field measurements. Based on theoretical analysis of the loading states of the bolt under site conditions, bolting method of full-length resin grouting was adopted to offset the weaknesses of the FRP bolt. Numerical method was employed to compare the bolting effect using Φ27 mm FRP bolts and steel rebar bolts. Large diameter FRP bolting was determined as the optimum rib support scheme to increase the productivity of the coal mine and to enhance the ground control capability for+425 level mining roadways. This study provides the laboratory testing design and theoretical prediction of large diameter FRP bolts used for rib support in large deformation roadways. 展开更多
关键词 FRP bolt Laboratory SEPT Tensile strength Double shear testing Mined rib support Large deformation roadway
下载PDF
Laboratory pull-out tests on fully grouted rock bolts and cable bolts:Results and lessons learned 被引量:15
4
作者 Isabelle Thenevin Laura Blanco-Martín +3 位作者 Faouzi Hadj-Hassen Jacques Schleifer Zbigniew Lubosik Aleksander Wrana 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第5期843-855,共13页
Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini... Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini-cage cable bolts.The diameter of the tested bolts was between 16 mm and 26 mm.The bolts were grouted in a sandstone sample using resin or cement grouts.The tests were conducted under either constant radial stiffness or constant confining pressure boundary conditions applied on the outer surface of the rock sample.In most tests,the rate of displacement was about 0.02 mm/s.The tests were performed using a pull-out bench that allows testing a wide range of parameters.This paper provides an extensive database of laboratory pull-out test results and confirms the influence of the confining pressure and the embedment length on the pull-out response(rock bolts and cable bolts).It also highlights the sensitivity of the results to the operating conditions and to the behavior of the sample as a whole,which cannot be neglected when the test results are used to assess the bolt-grout or the grouterock interface. 展开更多
关键词 PULL-OUT test Fully GROUTED bolts Laboratory-scale CONFINING pressure EMBEDMENT length Bolt-grout interface
下载PDF
Numerical and analytical simulation of the structural behaviour of fully grouted cable bolts under impulsive loading 被引量:9
5
作者 Faham Tahmasebinia Chengguo Zhang +2 位作者 Ismet Canbulat Onur Vardar Serkan Saydam 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第5期807-811,共5页
Designing reliable yielding support system to mitigate the effect of the kinetic energy in burst-prone conditions in mining and tunneling excavations is one of the challenges for geotechnical engineers. A combination ... Designing reliable yielding support system to mitigate the effect of the kinetic energy in burst-prone conditions in mining and tunneling excavations is one of the challenges for geotechnical engineers. A combination of the support elements can be used to increase rock strength and minimise the displacement of unstable rock mass. It is important to understand how the support system works to ensure the stability of underground excavations. Cable bolts have been commonly used as an effective underground support system and an element of reinforcement to improve rock stability. Cable bolts are usually considered to be subjected to static loads under relatively low stress environments, however, in burst-prone conditions, they might be subjected to dynamic loads. Cable bolts as well as other support elements are used in burst-prone conditions to absorb the kinetic energy of the removed rock to avoid sudden and violent failures. This paper develops numerical and a novel analytical simulation technique for cable bolts to assess their structural behaviour under static and dynamic loading conditions. The numerical and analytical models are then validated against experimental observations reported in the literature, which demonstrates the reliability of the proposed models. 展开更多
关键词 CABLE bolts YIELDING support Coal BURST SHEAR dynamic loading
下载PDF
A study of the load transfer behavior of fully grouted rock bolts with analytical modelling 被引量:10
6
作者 Jianhang Chen Fulian He Shoubao Zhang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第1期105-109,共5页
Fully grouted rock bolts have been used in mining industry for many years.Much research has been conducted to evaluate the load transfer behavior of fully grouted rock bolts with experimental programs.However,compared... Fully grouted rock bolts have been used in mining industry for many years.Much research has been conducted to evaluate the load transfer behavior of fully grouted rock bolts with experimental programs.However,compared with that,less work has been conducted with analytical modelling.Therefore,in this paper,the authors used an analytical model to study the load transfer behavior of fully grouted rock bolts.To confirm the credibility of this analytical model,an in-situ pull-out test was used to validate this model.There was a close match between the experimental result and the analytical result.Following it,a parametric study was conducted with this analytical model.The influence of coefficients,Young’s modulus of the rock bolt and the diameter of the rock bolt on the load transfer performance of rock bolts was studied.Furthermore,the load distribution along the fully grouted rock bolt was analytically studied.The results show that the axial load in the rock bolt decayed from the loaded end to the free end independent of the pull-out load.However,the trend of the load distribution curve was influenced by the pull-out load.This paper was beneficial for better understanding the load transfer mechanism of fully grouted rock bolts. 展开更多
关键词 ROCK bolts Load transfer ANALYTICAL modelling PARAMETRIC STUDY BOND-SLIP model
下载PDF
A Biomechanical Comparison of Conventional versus an Anatomic Plate and Compression Bolts for Fixation of Intra-articular Calcaneal Fractures 被引量:6
7
作者 王海立 杨朝旭 +5 位作者 吴战坡 陈伟 张奇 李明 李智勇 张英泽 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2012年第4期571-575,共5页
The purpose of this study was to compare the biomechanical stability obtained by using our technique featured an anatomical plate and compression bolts versus that of the conventional anatomic plate and cancellous scr... The purpose of this study was to compare the biomechanical stability obtained by using our technique featured an anatomical plate and compression bolts versus that of the conventional anatomic plate and cancellous screws in the fixation of intraarticular calcaneal fractures.Eighteen fresh frozen lower limbs of cadavers were used to create a reproductive Sanders type-Ⅲ calcaneal fracture model by using osteotomy.The calcaneus fractures were randomly selected to be fixed either using our anatomical plate and compression bolts or conventional anatomic plate and cancellous screws.Reduction of fracture was evaluated through X radiographs.Each calcaneus was successively loaded at a frequency of 1 Hz for 1000 cycles through the talus using an increasing axial force 20 N to 200 N and 20 N to 700 N,representing the partial weight bearing and full weight bearing,respectively,and then the specimens were loaded to failure.Data extracted from the mechanical testing machine were recorded and used to test for difference in the results with the Wilcoxon signed rank test.No significant difference was found between our fixation technique and conventional technique in displacement during 20-200 N cyclic loading(P=0.06),while the anatomical plate and compression bolts showed a great lower irreversible deformation during 20-700 N cyclic loading(P=0.008).The load achieved at loss of fixation of the constructs for the two groups had significant difference:anatomic plate and compression bolts at 3839.6±152.4 N and anatomic plate and cancellous screws at 3087.3±58.9 N(P=0.008).There was no significant difference between the ultimate displacements.Our technique featured anatomical plate and compression bolts for calcaneus fracture fixation was demonstrated to provide biomechanical stability as good as or better than the conventional anatomic plate and cancellous screws under the axial loading.The study supports the mechanical viability of using our plate and compression bolts for the fixation of calcaneal fracture. 展开更多
关键词 calcaneal fracture ANATOMIC PLATE FIXATION compression bolts CONVENTIONAL screws BIOMECHANICAL testing
下载PDF
Utilizing a novel fiber optic technology to capture the axial responses of fully grouted rock bolts 被引量:4
8
作者 Nicholas Vlachopoulos Daniel Cruz Bradley Forbes 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第2期222-235,共14页
Rock bolts are one of the primary support systems utilized in underground excavations within the civil and mining engineering industries. Rock bolts support the weakened rock mass adjacent to the opening of an excavat... Rock bolts are one of the primary support systems utilized in underground excavations within the civil and mining engineering industries. Rock bolts support the weakened rock mass adjacent to the opening of an excavation by fastening to the more stable, undisturbed formations further from the excavation. The overall response of such a support element has been determined under varying loading conditions in the laboratory and in situ experiments in the past four decades; however, due to the limitations with conventional monitoring methods of capturing strain, there still exists a gap in knowledge associated with an understanding of the geomechanical responses of rock bolts at the microscale. In this paper, we try to address this current gap in scientific knowledge by utilizing a newly developed distributed optical strain sensing(DOS) technology that provides an exceptional spatial resolution of 0.65 mm to capture the strain along the rock bolt. This DOS technology utilizes Rayleigh optical frequency domain reflectometry(ROFDR) which provides unprecedented insight into various mechanisms associated with axially loaded rebar specimens of different embedment lengths, grouting materials, borehole annulus conditions, and borehole diameters. The embedment length of the specimens was found to be the factor that significantly affected the loading of the rebar. The critical embedment length for the fully grouted rock bolts(FGRBs) was systematically determined to be430 mm. The results herein highlight the effects of the variation of these individual parameters on the geomechanical responses FGRBs. 展开更多
关键词 Fiber OPTIC TECHNOLOGY Fully GROUTED rock bolts Load transfer Stress distribution
下载PDF
A robust approach to identify roof bolts in 3D point cloud data captured from a mobile laser scanner 被引量:3
9
作者 Sarvesh Kumar Singh Simit Raval Bikram Banerjee 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期303-312,共10页
Roof bolts such as rock bolts and cable bolts provide structural support in underground mines.Frequent assessment of these support structures is critical to maintain roof stability and minimise safety risks in undergr... Roof bolts such as rock bolts and cable bolts provide structural support in underground mines.Frequent assessment of these support structures is critical to maintain roof stability and minimise safety risks in underground environments.This study proposes a robust workflow to classify roof bolts in 3 D point cloud data and to generate maps of roof bolt density and spacing.The workflow was evaluated for identifying roof bolts in an underground coal mine with suboptimal lighting and global navigation satellite system(GNSS)signals not available.The approach is based on supervised classification using the multi-scale Canupo classifier coupled with a random sample consensus(RANSAC)shape detection algorithm to provide robust roof bolt identification.The issue of sparseness in point cloud data has been addressed through upsampling by using a moving least squares method.The accuracy of roof bolt identification was measured by correct identification of roof bolts(true positives),unidentified roof bolts(false negatives),and falsely identified roof bolts(false positives)using correctness,completeness,and quality metrics.The proposed workflow achieved correct identification of 89.27%of the roof bolts present in the test area.However,considering the false positives and false negatives,the overall quality metric was reduced to 78.54%. 展开更多
关键词 Mobile laser scanning Roof bolts Support system planning Roof monitoring Change detection Underground roadways
下载PDF
MMM testing and failure analysis of fastening bolts on reciprocating compressor cylinder cover 被引量:3
10
作者 邢海燕 樊久铭 +1 位作者 徐敏强 李其 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第2期13-16,共4页
To avoid the serious accidents caused by the failure fastening bolts on reciprocating compressor cylinder cover,a new nondestructive testing(NDT) technology,metal magnetic memory(MMM) testing,was applied to safety eva... To avoid the serious accidents caused by the failure fastening bolts on reciprocating compressor cylinder cover,a new nondestructive testing(NDT) technology,metal magnetic memory(MMM) testing,was applied to safety evaluating and failure analyzing for the fastening bolts.Based on the dynamic stress calculation of the failure bolts,MMM testing was carried out at workshop.Given are the MMM stress distribution characteristics of the failure bolts and fracture faces.It has been found that the MMM signal variation amplitude of the crack transition zone in the fracture surface is minimal,that of the crack initiation zone is in the middle,and that of the tear fracture zone is maximal.The failure reasons were analyzed with MMM effect.The results of the metallographic examination showed that the validity and feasibility of MMM testing and failure analysis.This means MMM technology is a new,fast and validity method of failure analysis. 展开更多
关键词 metal magnetic memory testing fastening bolts failure analysis stress calculation
下载PDF
Studying the performance of fully encapsulated rock bolts with modified structural elements 被引量:2
11
作者 Jianhang Chen Hongbao Zhao +2 位作者 Fulian He Junwen Zhang Kangming Tao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第1期64-76,共13页
Numerical simulation is a useful tool in investigating the loading performance of rock bolts.The cable structural elements(cableSELs)in FLAC3D are commonly adopted to simulate rock bolts to solve geotechnical issues.I... Numerical simulation is a useful tool in investigating the loading performance of rock bolts.The cable structural elements(cableSELs)in FLAC3D are commonly adopted to simulate rock bolts to solve geotechnical issues.In this study,the bonding performance of the interface between the rock bolt and the grout material was simulated with a two-stage shearing coupling model.Furthermore,the FISH language was used to incorporate this two-stage shear coupling model into FLAC3D to modify the current cableSELs.Comparison was performed between numerical and experimental results to confirm that the numerical approach can properly simulate the loading performance of rock bolts.Based on the modified cableSELs,the influence of the bolt diameter on the performance of rock bolts and the shear stress propagation along the interface between the bolt and the grout were studied.The simulation results indicated that the load transfer capacity of rock bolts rose with the rock bolt diameter apparently.With the bolt diameter increasing,the performance of the rock bolting system was likely to change from the ductile behaviour to the brittle behaviour.Moreover,after the rock bolt was loaded,the position where the maximum shear stress occurred was variable.Specifically,with the continuous loading,it shifted from the rock bolt loaded end to the other end. 展开更多
关键词 Fully encapsulated rock bolts Numerical simulation Structural elements Shear coupling model Interface shear strength
下载PDF
Evaluation of load transfer mechanism under axial loads in a novel coupler of dual height rock bolts 被引量:1
12
作者 Ranjan Kumar Prabhat Kumar Mandal +1 位作者 Ashish Narayan Arka Jyoti Das 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期225-232,共8页
The effective reinforcement of two or more overlying layers of mine openings in a single installation is usually done by coupling of two standard rock bolts mainly during the extraction of medium-thick coal seams.Howe... The effective reinforcement of two or more overlying layers of mine openings in a single installation is usually done by coupling of two standard rock bolts mainly during the extraction of medium-thick coal seams.However,field observations show that the couplers of multiple bolts often degrade or break mostly at their connections.These types of failures can be avoided by strengthening the couplers of such multi-bolts assemblies.To achieve this,a novel threaded coupler system with an expansion shell was suggested in this paper.The newly designed coupler consists of a threaded tapered-plug-cumconnector with an expansion shell for connecting and tightening two standard rock bolts.An analytical model for evaluating the load distribution along the coupler subject to axial load was derived.Numerical analysis was performed to analyse the load transfer,deformation,and strains across the coupler including the factor of safety for the bolt-coupler-resin and bolt-coupler-expansion shell.The results validated the analytical model of the proposed coupler design,which provides better anchorage near the interface of the host rock mass.Thus,the developed coupler design would reduce the failures of the proposed coupler and stabilize laminated roof strata above the medium-thick coal seams in underground mines. 展开更多
关键词 Roof rock reinforcement Dual height rock bolts Rock bolt coupler Expansion shell Underground mining Laminated roof strata
下载PDF
Development and application of an interface constitutive model for fully grouted rock-bolts and cable-bolts 被引量:1
13
作者 Emad Jahangir Laura Blanco-Martin +1 位作者 Faouzi Hadj-Hassen Michel Tijani 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第4期811-819,共9页
This paper proposes a new interface constitutive model for fully grouted rock-bolts and cable-bolts based on pull-out test results.A database was created combining published experimental data with in-house tests.By me... This paper proposes a new interface constitutive model for fully grouted rock-bolts and cable-bolts based on pull-out test results.A database was created combining published experimental data with in-house tests.By means of a comprehensive framework,a Coulomb-type failure criterion accounting for friction mobilization was defined.During the elastic phase,in which the interface joint is not yet created,the proposed model provides zero radial displacement,and once the interface joint is created,interface dilatancy is modeled using a non-associated plastic potential inspired from the behavior of rock joints.The results predicted by the proposed model are in good agreement with experimental results.The model has been implemented in a finite element method(FEM)code and numerical simulations have been performed at the elementary and the structural scales.The results obtained provide confidence in the ability of the new model to assist in the design and optimization of bolting patterns. 展开更多
关键词 Fully grouted bolts Interface constitutive model DILATANCY Pull-out tests Finite element method(FEM)modeling
下载PDF
Characterization of Strength-Shift Behavior of Bolts Connected with and without Preloading
14
作者 A.Trindade 《Journal of Mechanics Engineering and Automation》 2018年第1期9-16,共8页
Bolted joins allow for more efficient joining of parts(mechanical and structural components)when assembly and disassembly,called interchangeability,are concerned.Also and for this reason,they are the most widely used ... Bolted joins allow for more efficient joining of parts(mechanical and structural components)when assembly and disassembly,called interchangeability,are concerned.Also and for this reason,they are the most widely used in the final assembly,already in construction,in a state of final consolidation of the structure.This work began in a pedagogical action to compare the experimental results with those obtained by Eurocode 3(EN 1993-1-8)in simple joints with screws subject to cutting,the study evolved the analysis of the behavior of the screws themselves in the joint.Tests were carried out with great dimensional accuracy,for new bolted connections,with different bolt’s number,according to different arrangements and repeated in cases of simple and preloaded tightening.The experimental work,carried out on a uniaxial tensile testing machine,consisted in subjecting the connections to a growing effort so that the bolts,being subject to the cut,would break through the thread-free zone.The analysis of results and their comparison(in force—displacement diagrams)allow drawing conclusions regarding the true behavior of the bolted connections.The characterization of the thresholds of the initial zone of the force—displacement curves,in the cases of connections with preloading—was the objective of study.The transfer of forces and the influence of friction on the bonds without and with preloading were then characterized.The main objective of this project is to know the meaning of the calculated values in the preloaded and non-preloaded links by Eurocode 3. 展开更多
关键词 bolts connections collapsible PRELOADING EUROCODE 3
下载PDF
Self-drilling Screw Bolts
15
《China's Foreign Trade》 1997年第1期14-14,共1页
Self-drilling screw bolts are a new product to replace ordinary screw bolts, and thus raise working efficiency ten times and reduce the cost of installation. According to the design theory of integrating drilling bit ... Self-drilling screw bolts are a new product to replace ordinary screw bolts, and thus raise working efficiency ten times and reduce the cost of installation. According to the design theory of integrating drilling bit with driving screw, the self-drilling screw bolt can complete successively the functions of drilling, screwing and fastening within several seconds, with the aid of a simple jig alone. This serves the development of board installations in room decoration and vehicle and ship building. 展开更多
关键词 Self-drilling Screw bolts
下载PDF
Research Review of Principles and Methods for Ultrasonic Measurement of Axial Stress in Bolts 被引量:7
16
作者 Qinxue Pan Ruipeng Pan +2 位作者 Chang Shao Meile Chang Xiaoyu Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第1期44-59,共16页
Bolts are important fasteners indispensable in the manufacturing field for their advantages, which include convenient assembly and disassembly, easy maintenance, refastenability to prevent looseness, and the avoidance... Bolts are important fasteners indispensable in the manufacturing field for their advantages, which include convenient assembly and disassembly, easy maintenance, refastenability to prevent looseness, and the avoidance of a phase change in the connected material composition. The precise control of the tightening force in bolts is closely related to the safety and reliability of the connected equipment or structure. Although there are many methods for estimating the tightening force applied to a bolt during assembly, poor accuracy in controlling the preload during the tightening process and a lack of monitoring to determine the residual axial force in service remain issues in evaluating the safety of bolted assemblies. As a nondestructive testing technology, ultrasonic measurement can be applied to successfully address these issues. In order to help researchers understand the theoretical basis and technological development in this field and to equip them to conduct further in-depth research, in this review, the basic knowledge describing the state of stress and deformation of bolts, as well as conventional testing methods are summarized and analyzed. Then, through a review of recent research of the ultrasonic measurement of the axial stress in bolts, the influence of the e ective stressed length and temperature are analyzed and proposed methods of calibration and compensation are reviewed. In order to avoid coupling errors caused by traditional piezoelectric transducers, two newly proposed ultrasonic coupling technologies, the electromagnetic acoustic transducer(EMAT) and the permanent mounted transducer system(PMTS), are reviewed. Finally, the new direction of research of the detection of residual axial stress in in-service bolts that have been assembled to yield is discussed. 展开更多
关键词 BOLTED CONNECTIONS AXIAL stress ULTRASONIC WAVES Influencing factors Coupling techniques
下载PDF
Loading characteristics of mechanical rib bolts determined through testing and numerical modeling 被引量:4
17
作者 Khaled Mohamed Gamal Rashed Zorica Radakovic-Guzina 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第1期17-24,共8页
Underground coal mines use mechanical bolts in addition to other types of bolts to control the rib deformation and to stabilize the yielded coal ribs.Limited research has been conducted to understand the performance o... Underground coal mines use mechanical bolts in addition to other types of bolts to control the rib deformation and to stabilize the yielded coal ribs.Limited research has been conducted to understand the performance of the mechanical bolts in coal ribs.Researchers from the National Institute for Occupational Safety and Health(NIOSH)conducted this work to understand the loading characteristics of mechanical bolts(stiffness and capacity)installed in coal ribs at five underground coal mines.Standard pull-out tests were performed in this study to define the loading characteristics of mechanical rib bolts.Different installation torques were applied to the tested bolts based on the strength of the coal seam.A typical tri-linear load-deformation response for mechanical bolts was obtained from these tests.It was found that the anchorage capacity depended mainly on the coal strength.Guidelines for modeling mechanical bolts have been developed using the tri-linear load-deformation response.The outcome of this research provides essential data for rib support design. 展开更多
关键词 Coal RIB MECHANICAL BOLT CONVENTIONAL BOLT Tension BOLT Point-anchored BOLT RIB support PULL-OUT test Numerical modeling FLAC3D
下载PDF
Experimental and numerical studies on progressive debonding of grouted rock bolts 被引量:5
18
作者 Hao Shi Lei Song +5 位作者 Houquan Zhang Wenlong Chen Huasheng Lin Danqi Li Guozhu Wang Huayun Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第1期63-74,共12页
Understanding the mechanism of progressive debonding of bolts is of great significance for underground safety.In this paper,both laboratory experiment and numerical simulation of the pull-out tests were performed.The ... Understanding the mechanism of progressive debonding of bolts is of great significance for underground safety.In this paper,both laboratory experiment and numerical simulation of the pull-out tests were performed.The experimental pull-out test specimens were prepared using cement mortar material,and a relationship between the pull-out strength of the bolt and the uniaxial compressive strength(UCS)of cement mortar material specimen was established.The locations of crack developed in the pull-out process were identified using the acoustic emission(AE)technique.The pull-out test was reproduced using 2D Particle Flow Code(PFC^(2D))with calibrated parameters.The experimental results show that the axial displacement of the cement mortar material at the peak load during the test was approximately 5 mm for cement-based grout of all strength.In contrast,the peak load of the bolt increased with the UCS of the confining medium.Under peak load,cracks propagated to less than one half of the anchorage length,indicating a lag between crack propagation and axial bolt load transmission.The simulation results show that the dilatation between the bolt and the rock induced cracks and extended the force field along the anchorage direction;and,it was identified as the major contributing factor for the pull-out failure of rock bolt. 展开更多
关键词 Bolt pull-out test Bolt failure process AE positioning Meso-interaction PFC2D simulation
下载PDF
Mechanical performance of rock bolts under combined load conditions 被引量:3
19
作者 P.C.Pinazzi A.J.S.(Sam)Spearing +2 位作者 K.V.Jessu P.Singh R.Hawker 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第2期167-177,共11页
Rock bolts are subjected to different loading conditions along their lengths such as axial,bending,and/or shear forces,which can cause failure at lower loads than those considered for design purposes.The common existi... Rock bolts are subjected to different loading conditions along their lengths such as axial,bending,and/or shear forces,which can cause failure at lower loads than those considered for design purposes.The common existing methodologies do not consider the actual loading of the rock bolts and assume it is only pure axial or pure shear.This study was conducted to investigate the un-grouted rock bolt performance under combined load conditions.Two loading regimes were evaluated:the effect of initial shear displacement on axial load capacity and displacement,and the effect of axial displacement on the shear load capacity.The first regime was also conducted for shear with a gap,when there is a spacing between the shear interfaces.The results of this study showed that the rock bolt can resist higher axial loads than shear under pure or combined load conditions.Under combined load conditions,the rock bolt capacity decreased significantly for both regimes.However,when applying the shear load with a gap,the rock bolt load capacity was not affected significantly.Also,the total bar deformation was improved for shear and axial.The findings of this study show the need to improve the rock bolt design considering the complex loading conditions in situ with/without a gap. 展开更多
关键词 ROCK BOLT Combined LOAD Gap test FAILURE mechanism AXIAL LOAD SHEAR LOAD
下载PDF
Anchoring mechanism and application of hydraulic expansion bolts used in soft rock roadway floor heave control 被引量:20
20
作者 Chang Qingliang Zhou Huaqiang +1 位作者 Xie Zhihong Shen Shiping 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期323-328,共6页
Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expre... Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expressed in four forms including support anchoring force, tension anchoring force, expansion anchoring force and tangent anchoring force, and their values can be obtained on the basis of each calculation formula. Among them, the expansion anchoring force, which is the unique anchoring force of the hydraulic expansion bolt, can provide confining pressure to increase the strength of rock. Aiming at solving the problem of stability control in the soft rock roadway in Jinbaotun Coal Mine which has a double layer of 40 U-type sheds and cannot provide enough resistance support to control floor heave, the study reveals the mechanism of floor heave in the soft rock roadway, and designs the reasonable support parameters of the hydraulic expansion bolts. The observed results of floor convergence indicate that the hydraulic expansion bolts can prevent the development and flow of the plastic zone in the floor rock to control floor heave. Research results enrich the control technology in the soft rock roadway. 展开更多
关键词 Hydraulic expansion bolt Anchoring force Soft rock roadway Floor heave Shed support
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部