期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Waders(Scolopacidae)surviving despite malaligned leg fractures in the wild:kinematics of bipedal locomotion
1
作者 Jessica Reichert Gerald Mayr +1 位作者 Thomas Wilke Winfried S.Peters 《Avian Research》 CSCD 2017年第3期168-175,共8页
Background: Bone fracture frequencies and survival rates are essential parameters in skeleton evolution, but information on the functional consequences of naturally healed fractures is scarce. No leg bone fracture hea... Background: Bone fracture frequencies and survival rates are essential parameters in skeleton evolution, but information on the functional consequences of naturally healed fractures is scarce. No leg bone fracture healing in the wild has been reported so far from long-legged Charadriiformes(waders), which depend on bipedal locomotion for feeding.Methods: We documented a healed but malaligned tarsometatarsus fracture in a wild Willet(Tringa [Catoptrophorus]semipalmata), and a malaligned tibiotarsus fracture in a Curlew(Numenius arquata) skeleton from a museum collection. Functional consequences of the malalignments were evaluated by kinematic analyses of videos(Willet) and in silico 3D modeling(Curlew).Results: The Willet's left tarsometatarsus exhibited an angular malalignment of 70°, resulting in a limping gait that was less pronounced at high than at low walking speed. The bird seemed unable to club the toes of the left foot together, apparently a secondary effect of the deformity. The Curlew's tibiotarsus showed an angular and an axial malalignment, causing the foot to rotate outwards when the intertarsal joint was flexed. Despite the severe effects of their injuries, the birds had survived at least long enough for the fractures to heal completely.Conclusions: Somewhat unexpectedly, leg fractures are not necessarily fatal in long-legged waders, even if deformities occur in the healing process. Bipedal locomotion on vegetated grounds must have been impeded due to the bone malalignments in both analyzed cases. The birds probably alleviated the impact of their handicaps by shifting a larger proportion of their activities to vegetation-free habitats. 展开更多
关键词 3D modeling bone fracture healing Tringa(Catoptrophorus) semipalmata Kinematic gait analysis Long bone malalignment Numenius arquata Scolopacidae
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部