期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Preparation and characterization of hemihydrate calcium sulfate-calcium hydroxide composite bone repair materials
1
作者 Zheng-Dong Guo Yang-Yang Bian +4 位作者 Xiao-Qian Liu Dong Wang Si-Yuan Zhang Jian Yang Lei Peng 《Journal of Hainan Medical University》 2022年第12期13-17,共5页
Objective:To prepare a bone repair material with certain mechanical strength and biological activity,this paper used calcium sulfate hemihydrate(CSH)powder compounded with calcium hydroxide(Ca(OH)2)powder to prepare a... Objective:To prepare a bone repair material with certain mechanical strength and biological activity,this paper used calcium sulfate hemihydrate(CSH)powder compounded with calcium hydroxide(Ca(OH)2)powder to prepare a bone repair scaffold material for physicochemical property characterization and testing.Methods:The physical and chemical properties and characterization of the dried and cured bone repair materials were determined by Fourier infrared spectroscopy(FT-IR),X-ray diffraction(XRD),and scanning electron microscopy;Universal material testing machine to determine the mechanical and mechanical strength of composite materials.Results:XRD showed that the structure of the composite material phase at 5%concentration was calcium sulfate hemihydrate and calcium hydroxide after hydration.The FT-IR and XRD analyses were consistent.Scanning electron microscopy(SEM)results showed that calcium hydroxide was uniformly dispersed in the hemihydrate calcium sulfate material.0%,1%,5%,and 10%specimen groups had compressive strengths of 3.86±3.1,5.27±1.28,8.22±0.96,and 14.4±3.28 MPa.10%addition of calcium hydroxide significantly improved the mechanical strength of the composites,but also reduced the the porosity of the material.Conclusion:With the addition of calcium hydroxide,the CSH-Ca(OH)2 composite was improved in terms of mechanical material and is expected to be a new type of bone repair material. 展开更多
关键词 Calcium sulfate hemihydrate Calcium hydroxide bone defect bone repair material Compressive strength
下载PDF
Comparative experiment of four different materials as carriers of Bone morphogenetic protein to repair long bone defect
2
《Chinese Journal of Biomedical Engineering(English Edition)》 2001年第3期120-121,共2页
关键词 bone Comparative experiment of four different materials as carriers of bone morphogenetic protein to repair long bone defect
下载PDF
The use of bioactive peptides to modify materials for bone tissue repair 被引量:1
3
作者 Cunyang Wang Yan Liu +1 位作者 Yubo Fan Xiaoming Li 《Regenerative Biomaterials》 SCIE 2017年第3期191-206,共16页
It has been well recognized that the modification of biomaterials with appropriate bioactive peptides could further enhance their functions.Especially,it has been shown that peptide-modified bone repair materials coul... It has been well recognized that the modification of biomaterials with appropriate bioactive peptides could further enhance their functions.Especially,it has been shown that peptide-modified bone repair materials could promote new bone formation more efficiently compared with conventional ones.The purpose of this article is to give a general review of recent studies on bioactive peptide-modified materials for bone tissue repair.Firstly,the main peptides for inducing bone regeneration and commonly used methods to prepare peptide-modified bone repair materials are introduced.Then,current in vitro and in vivo research progress of peptide-modified composites used as potential bone repair materials are reviewed and discussed.Generally speaking,the recent related studies have fully suggested that the modification of bone repair materials with osteogenicrelated peptides provide promising strategies for the development of bioactive materials and substrates for enhanced bone regeneration and the therapy of bone tissue diseases.Furthermore,we have proposed some research trends in the conclusion and perspectives part. 展开更多
关键词 bone repair material PEPTIDE osteogenic activity
原文传递
Biodegradable Zn-Sr alloy for bone regeneration in rat femoral condyle defect model: In vitro and in vivo studies 被引量:9
4
作者 Bo Jia Hongtao Yang +6 位作者 Zechuan Zhang Xinhua Qu Xiufeng Jia Qiang Wu Yu Han Yufeng Zheng Kerong Dai 《Bioactive Materials》 SCIE 2021年第6期1588-1604,共17页
Bone defects are commonly caused by severe trauma,malignant tumors,or congenital diseases and remain among the toughest clinical problems faced by orthopedic surgeons,especially when of critical size.Biodegradable zin... Bone defects are commonly caused by severe trauma,malignant tumors,or congenital diseases and remain among the toughest clinical problems faced by orthopedic surgeons,especially when of critical size.Biodegradable zinc-based metals have recently gained popularity for their desirable biocompatibility,suitable degradation rate,and favorable osteogenesis-promoting properties.The biphasic activity of Sr promotes osteogenesis and inhibits osteoclastogenesis,which imparts Zn-Sr alloys with the ideal theoretical osteogenic properties.Herein,a biodegradable Zn-Sr binary alloy system was fabricated.The cytocompatibility and osteogenesis of the Zn-Sr alloys were significantly better than those of pure Zn in MC3T3-E1 cells.RNA-sequencing illustrated that the Zn-0.8Sr alloy promoted osteogenesis by activating the wnt/β-catenin,PI3K/Akt,and MAPK/Erk signaling pathways.Furthermore,rat femoral condyle defects were repaired using Zn-0.8Sr alloy scaffolds,with pure Ti as a control.The scaffold-bone integration and bone ingrowth confirmed the favorable in vivo repair properties of the Zn-Sr alloy,which was verified to offer satisfactory biosafety based on the hematoxylin-eosin(H&E)staining and ion concentration testing of important organs.The Zn-0.8Sr alloy was identified as an ideal bone repair material candidate,especially for application in critical-sized defects on load-bearing sites due to its favorable biocompatibility and osteogenic properties in vitro and in vivo. 展开更多
关键词 Biodegradable metal Zn–Sr alloy bone defects bone repair material OSTEOGENESIS
原文传递
The effect of carbon nanotubes on osteogenic functions of adipose-derived mesenchymal stem cells in vitro and bone formation in vivo compared with that of nano-hydroxyapatite and the possible mechanism 被引量:4
5
作者 Zhipo Du Xinxing Feng +5 位作者 Guangxiu Cao Zhending She Rongwei Tan Katerina E.Aifantis Ruihong Zhang Xiaoming Li 《Bioactive Materials》 SCIE 2021年第2期333-345,共13页
It has been well recognized that the development and use of artificial materials with high osteogenic ability is one of the most promising means to replace bone grafting that has exhibited various negative effects.The... It has been well recognized that the development and use of artificial materials with high osteogenic ability is one of the most promising means to replace bone grafting that has exhibited various negative effects.The biomimetic features and unique physiochemical properties of nanomaterials play important roles in stimulating cellular functions and guiding tissue regeneration.But efficacy degree of some nanomaterials to promote specific tissue formation is still not clear.We hereby comparatively studied the osteogenic ability of our treated multiwalled carbon nanotubes(MCNTs)and the main inorganic mineral component of natural bone,nano-hydroxyapatite(nHA)in the same system,and tried to tell the related mechanism.In vitro culture of human adiposederived mesenchymal stem cells(HASCs)on the MCNTs and nHA demonstrated that although there was no significant difference in the cell adhesion amount between on the MCNTs and nHA,the cell attachment strength and proliferation on the MCNTs were better.Most importantly,the MCNTs could induce osteogenic differentiation of the HASCs better than the nHA,the possible mechanism of which was found to be that the MCNTs could activate Notch involved signaling pathways by concentrating more proteins,including specific bone-inducing ones.Moreover,the MCNTs could induce ectopic bone formation in vivo while the nHA could not,which might be because MCNTs could stimulate inducible cells in tissues to form inductive bone better than nHA by concentrating more proteins including specific bone-inducing ones secreted from M2 macrophages.Therefore,MCNTs might be more effective materials for accelerating bone formation even than nHA. 展开更多
关键词 Multi-walled carbon nanotubes(MCNTs) bone repair material Protein adsorption Osteogenic differentiation bone formation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部