A special case of the bottleneck Steiner tree problem in the Euclidean plane was considered in this paper. The problem has applications in the design of wireless communication networks, multifacility location, VLSI ro...A special case of the bottleneck Steiner tree problem in the Euclidean plane was considered in this paper. The problem has applications in the design of wireless communication networks, multifacility location, VLSI routing and network routing. For the special case which requires that there should be no edge connecting any two Steiner points in the optimal solution, a 3-restricted Steiner tree can be found indicating the existence of the performance ratio root2. In this paper, the special case of the problem is proved to be NP-hard and cannot be approximated within ratio root2. First a simple polynomial time approximation algorithm with performance ratio root3 is presented. Then based on this algorithm and the existence of the 3-restricted Steiner tree, a polynomial time approximation algorithm with performance ratio-root2 + epsilon is proposed, for any epsilon > 0.展开更多
文摘A special case of the bottleneck Steiner tree problem in the Euclidean plane was considered in this paper. The problem has applications in the design of wireless communication networks, multifacility location, VLSI routing and network routing. For the special case which requires that there should be no edge connecting any two Steiner points in the optimal solution, a 3-restricted Steiner tree can be found indicating the existence of the performance ratio root2. In this paper, the special case of the problem is proved to be NP-hard and cannot be approximated within ratio root2. First a simple polynomial time approximation algorithm with performance ratio root3 is presented. Then based on this algorithm and the existence of the 3-restricted Steiner tree, a polynomial time approximation algorithm with performance ratio-root2 + epsilon is proposed, for any epsilon > 0.