Rubber latex is an important economic resource. However, the residues from its harvesting are thrown away, even though they contain lipids that can be recycled. This recovery of the residues from the bottom of the cup...Rubber latex is an important economic resource. However, the residues from its harvesting are thrown away, even though they contain lipids that can be recycled. This recovery of the residues from the bottom of the cup requires first and foremost their characterization. The aim of this study is therefore to determine the main physical and chemical characteristics of rubber latex cup bottom oil. Oil’s physical parameters determination shows that it has a density of 951 kg∙m−3, a kinematic viscosity of 48.57 cSt and a water content of 0.0845%. Chemical parameters, meanwhile, indicate that this cup bottom residue has a fat content of 95.96%, an acid number of 2.805 mg KOH/g and an iodine number of 92.42 g I2/100g. Therefore, rubber latex cup bottom oil can be used in the formulation of biofuels, biolubricants, paints, varnishes, alkyd resins, polishing oils, soaps, and insecticides.展开更多
Health-care waste contains potentially harmful microorganisms and compounds which can infect and affect hospital patients, healthcare workers, the general public and environment. Therefore, management of health care w...Health-care waste contains potentially harmful microorganisms and compounds which can infect and affect hospital patients, healthcare workers, the general public and environment. Therefore, management of health care waste requires safe handling, treatment and disposal procedures. While incineration reduces the volume and quantity of waste for final disposal, it leads to the production of fly and bottom ashes laden with toxic incomplete combustion products such as Polycyclic Aromatic Hydrocarbons (PAHs), dioxins, furans and heavy metals. This exposes workers who handle and dispose the bottom ashes, hospital patients, the general public and environment. The goal of this study was to determine the total and individual levels of 16 most prevalent and toxic PAHs. Bottom ash samples were collected from incinerators in five county hospitals in Kenya, namely;Moi-Voi, Narok, Kitale, Makindu and Isiolo. Bottom ash samples were collected over a period of six months from the five hospitals. The samples were then sieved, homogenised and stored at 4°C in amber coloured glass containers. The PAHs were extracted using 30 ml of a hexane-acetone solvent (1:1) mixture by ultrasonication at room temperature (23°C) for 45 minutes. The PAHs were then analyzed with a GC-MS spectrophotometer model (Shimadzu GCMS-QP2010 SE) connected to a computer work station was used for the PAHs analysis. The GC-MS was equipped with an SGE BPX5 GC capillary column (30 m × 0.25 mm × 0.25 μm) for the separation of compounds. Helium was used as the carrier gas at a flow rate of 15.5 ml/minute and 14.5 psi. 1 μl of the sample was injected at 280°C, split mode (10:1). The oven programming was set for a total runtime of 40 minutes, which included: 100°C (2-minute hold);10°C /min rise to 200°C;7°C /min rise to 249°C;3°C /min rise to 300°C (2-minute hold). The interface temperature was set at 290°C. Analysis was done in Selected Ion Monitoring (SIM) mode and the peak areas of each of the PAHs were collected from the chromatograph and used for quantification of the 16 PAHs listed by the U.S. Environmental Protection Agency (EPA) which included, BaA (benz[a]anthracene: 4 rings), BaP (benzo[a]pyrene: 5 rings), BbF (benzo [b]fluoranthene: 5 rings), BkF (benzo[k]fluoranthene: 5 rings), Chr (chrysene: 4 rings), DbA (dibenz[a,h]anthracene: 5 rings), InP (indeno[1,2,3 - cd] pyrene: 6 rings) and Acp (acenaphthene: 3 rings), Acpy (acenaphthylene: 3 rings), Ant (anthracene: 3 rings), BghiP (benzo[g,h,i]perylene: 6 rings), Flu (fluorene: 3 rings), FluA (fluoranthene: 4 rings), Nap (naphthalene: 2 rings), PhA (phenanthrene: 3 rings) and Pyr (pyrene: 4 rings). Ion source-interface temperature was set at 200°C - 250°C. Internal standards from Sigma Aldrich were used in the analysis and the acquired mass spectra data were then matched against the NIST 2014 library [1] [2]. The mean PAHs concentration in the bottom ashes of each hospital varied broadly from 0.001 mg/kg to 0.4845 mg/kg, and the mean total concentration levels of individual PAHs ranged from 0.0072 mg/kg to 1.171 mg/kg. Low molecular weight PAHs (Phenanthrene, Naphthalene and Fluorene) were predominant in all the hospital wastes whereas Kitale and Narok presented the lowest PAHs concentrations and the lowest number of individual PAHs. Moi/Voi recorded the highest total PAHs concentration at 1.3129 ± 0.0023 mg/kg from a total of 11 PAHs being detected from the bottom ash samples. Narok had only three PAHs being detected at very low concentrations of 0.0041 ± 0.00 mg/kg, 0.0076 ± 0.00 mg/kg and 0.012 ± 0.00 mg/kg for phenanthrene, anthracene and chrysene respectively. This study presents hospital incinerator bottom ash as containing detectable levels of both carcinogenic and non-carcinogenic PAHs. Continued unprotected exposure of hospital workers (waste handlers) to the bottom ash PAHs could be hazardous to their health because of their cumulative effect. Preventive measures e.g. the use of Personal protective equipment (PPE) should be prioritised to minimise direct contact with the bottom ash. The study recommends an upgrade on incinerator technology for efficient combustion processes thus for better pollution control.展开更多
Most motor oils are made from mineral oils derived from petroleum, the reserves of which are limited and exhaustible. The aim of this study is to produce and characterize motor oil formulations based on mixtures of ru...Most motor oils are made from mineral oils derived from petroleum, the reserves of which are limited and exhaustible. The aim of this study is to produce and characterize motor oil formulations based on mixtures of rubber latex cup bottom oil (RLCBO) and used frying oil (UFO). The results show that these formulations have a density between 0.91 and 0.92. These densities evolve linearly with the proportion of cup bottom oil and temperature. Similarly, the kinematic viscosity of the blends follows an exponential relationship with temperature. By plotting the logarithm of these kinematic viscosities against the inverse of the temperature, we were able to determine the activation energy of the various blends and deduce that the formulations behave Newtonian.展开更多
Healthcare wastes contain potentially harmful microorganisms, inorganic and organic compounds that pose a risk to human health and the environment. Incineration is a common method employed in healthcare waste manageme...Healthcare wastes contain potentially harmful microorganisms, inorganic and organic compounds that pose a risk to human health and the environment. Incineration is a common method employed in healthcare waste management to reduce volume, quantity, toxicity as well as elimination of microorganisms. However, some of the substances remain unchanged during incineration and become part of bottom ash, such as heavy metals and persistent organic pollutants. Monitoring of pollution by heavy metals is important since their concentrations in the environment affect public health. The goal of this study was to determine the levels of Copper (Cu), Zinc (Zn) Lead (Pb), Cadmium (Cd) and Nickel (Ni) in the incinerator bottom ash in five selected County hospitals in Kenya. Bottom ash samples were collected over a period of six months. Sample preparation and treatment were done using standard methods. Analysis of the heavy metals were done using atomic absorption spectrophotometer, model AA-6200. One-Way Analysis of Variance (ANOVA) was performed to determine whether there were significant differences on the mean levels of Cu, Zn, Pd, Cd and Ni in incinerator bottom ash from the five sampling locations. A post-hoc Tukey’s Test (HSD) was used to determine if there were significant differences between and within samples. The significant differences were accepted at p ≤ 0.05. To standardize the results, overall mean of each metal from each site was calculated. The metal mean concentration values were compared with existing permissible levels set by the WHO. The concentrations (mg/kg) were in the range of 102.27 - 192.53 for Cu, Zn (131.68 - 2840.85), Pb (41.06 - 303.96), Cd (1.92 - 20.49) whereas Ni was (13.83 - 38.27) with a mean of 150.76 ± 77.88 for Copper, 131.66 ± 1598.95 for Zinc, 234.60 ± 262.76 for Lead, 12.256 ± 10.86 for Cadmium and 29.45 ± 18.24 for Nickel across the five sampling locations. There were significant differences between levels determined by one-way ANOVA of Zn (F (4, 25) = 6.893, p = 0.001, p ≤ 0.05) and Cd (F (4, 25) = 5.641, p = 0.02) and none with Cu (F (4, 25) = 1.405, p = 0.261, p ≤ 0.05), Pb (F (4, 25) = 1.073, p = 0.391, p ≤ 0.05) and Ni (F (4, 25) = 2.492, p = 0.069). Results reveal that metal content in all samples exceed the WHO permissible levels for Cu (100 mg/kg), while those for Ni were below the WHO set standards of 50 mg/kg. Levels of Zn in three hospitals exceeded permissible level of 300 mg/kg while level of Pb exceeded WHO set standards of 100 mg/kg in two hospitals. Samples from four hospitals exceeded permissible level for Cd of 3 mg/kg. This study provides evidence that incinerator bottom ash is contaminated with toxic heavy metals to human health and the environment. This study recommends that hospitals should handle the bottom ash as hazardous wastes and there is need to train and provide appropriate personal protective equipment to healthcare workers, waste handlers, and incinerator operators and enforce compliance to existing regulation and guidelines on healthcare waste management to safeguard the environment and human health.展开更多
This paper describes valley bottom troughs of the Changjiang River and infers the geomorphologic development of troughs. Based on the morphology of the troughs, the following conclusions are drawn. (1) The deep trough...This paper describes valley bottom troughs of the Changjiang River and infers the geomorphologic development of troughs. Based on the morphology of the troughs, the following conclusions are drawn. (1) The deep troughs on the Three Gorges valley bottom are formed by river downcutting along the structural zones on the background of regional tectonic uplift at about 40-30 ka BP. (2) When river downcutting occurred in the river bed of Changjiang, the jets current (particularly eddy current) with a large number of pebbles ground and eroded the valley bottom, resulting in trough formation and deepening. Meanwhile, water currents with gravels and pebbles eroded the bank and the left wall of No.76 trough as well as the right wall of No.77 trough by striking, scouring, horizontal and vertical grinding. (3) The depth of the trough is mainly determined by the intensity of the water current and the consistency of bedrock against erosion, and is not controlled by the altitude of the sea level as the base level of erosion.展开更多
Without taking inducing factors into consideration, this paper adopts a quantitative analysis of the bottom factors in the Three Gorges Reservoir area, studies the relationship between the bottom factors and the devel...Without taking inducing factors into consideration, this paper adopts a quantitative analysis of the bottom factors in the Three Gorges Reservoir area, studies the relationship between the bottom factors and the development of landslides, and then zones the area according to risk levels. The bottom factors adopted in this paper include lithological characters(U1 ), gradient(U2 ), slope form (U3), difference of helght(U4 ), and slope orientation(U5 ). In 4 650 km^2 of the studied area, the areas of the very high, high, medium and low hazard degree area respectively were 57. 94 km^2 , 2 305.15 km^2, 1 241.6 km^2, 1 045.31 km^2. The methodological steps are (1) inversion statistic analysis, (2) the analysis of contribution ratio and weighing, (3) getting results via fuzzy evaluation of risk levels.展开更多
High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of ...High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of mu(= h/lambda, depth to deep-water wave length ratio) and epsilon(= a/h, wave amplitude to depth ratio) for velocity potential, particle velocity vector, pressure and the Boussinesq-type equations for surface elevation eta and horizontal velocity vector (U) over right arrow at any given level in water are given. Then, the exact explicit expressions to the fourth order of mu are derived. Finally, the linear solutions of eta, (U) over right arrow, C (phase-celerity) and C-g (group velocity) for a constant water depth are obtained. Compared with the Airy theory, excellent results can be found even for a water depth as large as the wave legnth. The present high-order models are applicable to nonlinear regular and irregular waves in water of any varying depth (from shallow to deep) and bottom slope (from mild to steep).展开更多
The methane concentration of water samples at five stations collected by the CTD rosette water sampler in the areas of southwest Dongsha Islands and the Xisha Trough was analyzed by the gas-stripping method on aboard ...The methane concentration of water samples at five stations collected by the CTD rosette water sampler in the areas of southwest Dongsha Islands and the Xisha Trough was analyzed by the gas-stripping method on aboard ship. It shows abnormal high methane concentrations in near bottom water samples at three stations. In the southwest Dongsha Islands area, the methane conc.entration of 4. 25 and 10. 64 nmol/dm3 occurs in near bottom water samples at Stas E105A and El06, respectively. In the Xisha Trough area, the high methane concentrations of 5. 17, 8.48 and 8.70 nmol/dm3 in water depths of 1 750, 1 900 and 2 050 m, respectively, have been observed at Sta. F413. It is believed that the abnormal high methane concentrations are generated from the leakage of methane from sediments. Combining with previous geophysical and geochemical data from these two areas, this was probably related to the submarine gas hydrates decomposition and cold seep system. In May 2007, gas hydrate samples were successfully obtained by the drilling in the Shenhu Sea area located in the southwest Dongsha Islands area. It is called for further drilling surveys to confirm the existence of gas hydrate and cold seep system in the Xisha Trough as early as possible.展开更多
Barrier impacts on water cut and critical rate of horizontal wells in bottom water-drive reservoirs have been recognized but not investigated quantitatively. Considering the existence of impermeable barriers in oil fo...Barrier impacts on water cut and critical rate of horizontal wells in bottom water-drive reservoirs have been recognized but not investigated quantitatively. Considering the existence of impermeable barriers in oil formations, this paper developed a horizontal well flow model and obtained mathematical equations for the critical rate when water cresting forms in bottom-water reservoirs. The result shows that the barrier increases the critical rate and delays water breakthrough. Further study of the barrier size and location shows that increases in the barrier size and the distance between the barrier and oil-water contact lead to higher critical rates. The critical rate gradually approaches a constant as the barrier size increases. The case study shows the method presented here can be used to predict the critical rate in a bottom-water reservoir and applied to investigate the water cresting behavior of horizontal wells.展开更多
On the basis of the measurement data pertaining to waves, current, and sediment in February 2012 in the mouth bar of the Modaomen Estuary, the Soulsby formulae with an iterative method are applied to calculating botto...On the basis of the measurement data pertaining to waves, current, and sediment in February 2012 in the mouth bar of the Modaomen Estuary, the Soulsby formulae with an iterative method are applied to calculating bottom shear stresses (BSS) and their effect on a sediment resuspension. Swell induced BSS have been found to be the most important part of the BSS. In this study, the correlation coefficient between a wavecurrent shear stress and SSC is 0.86, and that between current shear stresses and SSC is only 0.40. The peaks of the SSC are consistent with the height and the BSS of the swell. The swell is the main mechanism for the sediment re-suspension, and the tidal current effect on sediment re-suspension is small. The peaks of the SSC are centered on the high tidal level, and the flood tide enhances the wave shear stresses and the SSC near the bottom. The critical shear stress for sediment re-suspension at the observation station is between 0.20 and 0.30 N/m2. Tidal currents are too weak to stir up the bottom sediment into the flow, but a WCI (wave-current interaction) is strong enough to re-suspend the coarse sediment.展开更多
Cloud resolving Weather Research and Forecasting(WRF)model simulations are used to investigate tropical cyclone(TC)genesis efficiency in an environment with a near bottom vortex(EBV)and an environment with a mid-level...Cloud resolving Weather Research and Forecasting(WRF)model simulations are used to investigate tropical cyclone(TC)genesis efficiency in an environment with a near bottom vortex(EBV)and an environment with a mid-level vortex(EMV).Sensitivity experiments show that the genesis timing depends greatly on initial vorticity vertical profiles.The larger the initial column integrated absolute vorticity,the greater the genesis efficiency is.Given the same column integrated absolute vorticity,a bottom vortex has higher genesis efficiency than a mid-level vortex.A common feature among these experiments is the formation of a mid-level vorticity maximum prior to TC genesis irrespective where the initial vorticity maximum locates.Both the EMV and EBV scenarios share the following development characteristics:1)a transition from non-organized cumulus-scale(~5 km)convective cells into an organized meso-vortex-scale(~50 to 100 km)system through upscale cascade processes,2)the establishment of a nearly saturated air column prior to a rapid drop of the central minimum pressure,and 3)a multiple convective-stratiform phase transition.A genesis efficiency index(GEI)is formulated that includes the following factors:initial column integrated absolute vorticity,vorticity at top of the boundary layer and vertically integrated relative humidity.The calculated GEI reflects well the simulated genesis efficiency and thus may be used to estimate how fast a tropical disturbance develops into a TC.展开更多
One of the bottlenecks of the blast furnace (BF) campaign is the life length of hearth bottom. The basic reason for the erosion of hearth bottom is its direct contact with hot metal. According to the theory of heat ...One of the bottlenecks of the blast furnace (BF) campaign is the life length of hearth bottom. The basic reason for the erosion of hearth bottom is its direct contact with hot metal. According to the theory of heat transfer, models of BF hearth bottom are built based on the actual examples using software and VC language, and the calculated results are in good agreement with the data of BF dissection after blowing out. The temperature distribution and the capability of the resistance to erosion for different structures of hearth bottom are analyzed, especially the two prevalent kinds of hearth bottom arrangements called "the method of heat transfer" for all-carbon brick bottom and "the method of heat isolation" for ceramic synthetic hearth bottom. Features of the two kinds of hearth bottoms are analyzed. Also the different ways of protecting the hearth bottom are clarified, according to some actual examples. After that, the same essence of prolonging life, and the fact that the existence of a "protective skull" with low thermal conductivity between the hot metal and brick layers is of utmost importance are shown.展开更多
The hydrodynamic performance of a bottom-hinged flap wave energy converter (WEC) is investigated through a frequency domain numerical model. The numerical model is verified through a two-dimensional analytic solutio...The hydrodynamic performance of a bottom-hinged flap wave energy converter (WEC) is investigated through a frequency domain numerical model. The numerical model is verified through a two-dimensional analytic solution, as well as the qualitative analysis on the dynamic response of avibrating system. The concept of "optimum density" of the bottom-hinged flap is proposed, and its analytic expression is derived as well. The frequency interval in which the optimum density exists is also obtained. The analytic expression of the optimum linear damping coefficient is obtained by a bottom-hinged WEC. Some basic dynamic properties involving natural period, excitation moment, pitch amplitude, and optimum damping coefficient are analyzed and discussed in detail. In addition, this paper highlights the analysis of effects on the conversion performance of the device exerted by some important parameters. The results indicate that "the optimum linear damping period of 5.0 s" is the most ideal option in the short wave sea states with the wave period below 6.0 s. Shallow water depth, large flap thickness and low flap density are advised in the practical design of the device in short wave sea states in order to maximize power capture. In the sea state with water depth of 5.0 m and wave period of 5.0 s, the results of parametric optimization suggest a flap with the width of 8.0 m, thickness of 1.6 m, and with the density as little as possible when the optimum power take-off (PTO) damping coefficient is adopted.展开更多
文摘Rubber latex is an important economic resource. However, the residues from its harvesting are thrown away, even though they contain lipids that can be recycled. This recovery of the residues from the bottom of the cup requires first and foremost their characterization. The aim of this study is therefore to determine the main physical and chemical characteristics of rubber latex cup bottom oil. Oil’s physical parameters determination shows that it has a density of 951 kg∙m−3, a kinematic viscosity of 48.57 cSt and a water content of 0.0845%. Chemical parameters, meanwhile, indicate that this cup bottom residue has a fat content of 95.96%, an acid number of 2.805 mg KOH/g and an iodine number of 92.42 g I2/100g. Therefore, rubber latex cup bottom oil can be used in the formulation of biofuels, biolubricants, paints, varnishes, alkyd resins, polishing oils, soaps, and insecticides.
文摘Health-care waste contains potentially harmful microorganisms and compounds which can infect and affect hospital patients, healthcare workers, the general public and environment. Therefore, management of health care waste requires safe handling, treatment and disposal procedures. While incineration reduces the volume and quantity of waste for final disposal, it leads to the production of fly and bottom ashes laden with toxic incomplete combustion products such as Polycyclic Aromatic Hydrocarbons (PAHs), dioxins, furans and heavy metals. This exposes workers who handle and dispose the bottom ashes, hospital patients, the general public and environment. The goal of this study was to determine the total and individual levels of 16 most prevalent and toxic PAHs. Bottom ash samples were collected from incinerators in five county hospitals in Kenya, namely;Moi-Voi, Narok, Kitale, Makindu and Isiolo. Bottom ash samples were collected over a period of six months from the five hospitals. The samples were then sieved, homogenised and stored at 4°C in amber coloured glass containers. The PAHs were extracted using 30 ml of a hexane-acetone solvent (1:1) mixture by ultrasonication at room temperature (23°C) for 45 minutes. The PAHs were then analyzed with a GC-MS spectrophotometer model (Shimadzu GCMS-QP2010 SE) connected to a computer work station was used for the PAHs analysis. The GC-MS was equipped with an SGE BPX5 GC capillary column (30 m × 0.25 mm × 0.25 μm) for the separation of compounds. Helium was used as the carrier gas at a flow rate of 15.5 ml/minute and 14.5 psi. 1 μl of the sample was injected at 280°C, split mode (10:1). The oven programming was set for a total runtime of 40 minutes, which included: 100°C (2-minute hold);10°C /min rise to 200°C;7°C /min rise to 249°C;3°C /min rise to 300°C (2-minute hold). The interface temperature was set at 290°C. Analysis was done in Selected Ion Monitoring (SIM) mode and the peak areas of each of the PAHs were collected from the chromatograph and used for quantification of the 16 PAHs listed by the U.S. Environmental Protection Agency (EPA) which included, BaA (benz[a]anthracene: 4 rings), BaP (benzo[a]pyrene: 5 rings), BbF (benzo [b]fluoranthene: 5 rings), BkF (benzo[k]fluoranthene: 5 rings), Chr (chrysene: 4 rings), DbA (dibenz[a,h]anthracene: 5 rings), InP (indeno[1,2,3 - cd] pyrene: 6 rings) and Acp (acenaphthene: 3 rings), Acpy (acenaphthylene: 3 rings), Ant (anthracene: 3 rings), BghiP (benzo[g,h,i]perylene: 6 rings), Flu (fluorene: 3 rings), FluA (fluoranthene: 4 rings), Nap (naphthalene: 2 rings), PhA (phenanthrene: 3 rings) and Pyr (pyrene: 4 rings). Ion source-interface temperature was set at 200°C - 250°C. Internal standards from Sigma Aldrich were used in the analysis and the acquired mass spectra data were then matched against the NIST 2014 library [1] [2]. The mean PAHs concentration in the bottom ashes of each hospital varied broadly from 0.001 mg/kg to 0.4845 mg/kg, and the mean total concentration levels of individual PAHs ranged from 0.0072 mg/kg to 1.171 mg/kg. Low molecular weight PAHs (Phenanthrene, Naphthalene and Fluorene) were predominant in all the hospital wastes whereas Kitale and Narok presented the lowest PAHs concentrations and the lowest number of individual PAHs. Moi/Voi recorded the highest total PAHs concentration at 1.3129 ± 0.0023 mg/kg from a total of 11 PAHs being detected from the bottom ash samples. Narok had only three PAHs being detected at very low concentrations of 0.0041 ± 0.00 mg/kg, 0.0076 ± 0.00 mg/kg and 0.012 ± 0.00 mg/kg for phenanthrene, anthracene and chrysene respectively. This study presents hospital incinerator bottom ash as containing detectable levels of both carcinogenic and non-carcinogenic PAHs. Continued unprotected exposure of hospital workers (waste handlers) to the bottom ash PAHs could be hazardous to their health because of their cumulative effect. Preventive measures e.g. the use of Personal protective equipment (PPE) should be prioritised to minimise direct contact with the bottom ash. The study recommends an upgrade on incinerator technology for efficient combustion processes thus for better pollution control.
文摘Most motor oils are made from mineral oils derived from petroleum, the reserves of which are limited and exhaustible. The aim of this study is to produce and characterize motor oil formulations based on mixtures of rubber latex cup bottom oil (RLCBO) and used frying oil (UFO). The results show that these formulations have a density between 0.91 and 0.92. These densities evolve linearly with the proportion of cup bottom oil and temperature. Similarly, the kinematic viscosity of the blends follows an exponential relationship with temperature. By plotting the logarithm of these kinematic viscosities against the inverse of the temperature, we were able to determine the activation energy of the various blends and deduce that the formulations behave Newtonian.
文摘Healthcare wastes contain potentially harmful microorganisms, inorganic and organic compounds that pose a risk to human health and the environment. Incineration is a common method employed in healthcare waste management to reduce volume, quantity, toxicity as well as elimination of microorganisms. However, some of the substances remain unchanged during incineration and become part of bottom ash, such as heavy metals and persistent organic pollutants. Monitoring of pollution by heavy metals is important since their concentrations in the environment affect public health. The goal of this study was to determine the levels of Copper (Cu), Zinc (Zn) Lead (Pb), Cadmium (Cd) and Nickel (Ni) in the incinerator bottom ash in five selected County hospitals in Kenya. Bottom ash samples were collected over a period of six months. Sample preparation and treatment were done using standard methods. Analysis of the heavy metals were done using atomic absorption spectrophotometer, model AA-6200. One-Way Analysis of Variance (ANOVA) was performed to determine whether there were significant differences on the mean levels of Cu, Zn, Pd, Cd and Ni in incinerator bottom ash from the five sampling locations. A post-hoc Tukey’s Test (HSD) was used to determine if there were significant differences between and within samples. The significant differences were accepted at p ≤ 0.05. To standardize the results, overall mean of each metal from each site was calculated. The metal mean concentration values were compared with existing permissible levels set by the WHO. The concentrations (mg/kg) were in the range of 102.27 - 192.53 for Cu, Zn (131.68 - 2840.85), Pb (41.06 - 303.96), Cd (1.92 - 20.49) whereas Ni was (13.83 - 38.27) with a mean of 150.76 ± 77.88 for Copper, 131.66 ± 1598.95 for Zinc, 234.60 ± 262.76 for Lead, 12.256 ± 10.86 for Cadmium and 29.45 ± 18.24 for Nickel across the five sampling locations. There were significant differences between levels determined by one-way ANOVA of Zn (F (4, 25) = 6.893, p = 0.001, p ≤ 0.05) and Cd (F (4, 25) = 5.641, p = 0.02) and none with Cu (F (4, 25) = 1.405, p = 0.261, p ≤ 0.05), Pb (F (4, 25) = 1.073, p = 0.391, p ≤ 0.05) and Ni (F (4, 25) = 2.492, p = 0.069). Results reveal that metal content in all samples exceed the WHO permissible levels for Cu (100 mg/kg), while those for Ni were below the WHO set standards of 50 mg/kg. Levels of Zn in three hospitals exceeded permissible level of 300 mg/kg while level of Pb exceeded WHO set standards of 100 mg/kg in two hospitals. Samples from four hospitals exceeded permissible level for Cd of 3 mg/kg. This study provides evidence that incinerator bottom ash is contaminated with toxic heavy metals to human health and the environment. This study recommends that hospitals should handle the bottom ash as hazardous wastes and there is need to train and provide appropriate personal protective equipment to healthcare workers, waste handlers, and incinerator operators and enforce compliance to existing regulation and guidelines on healthcare waste management to safeguard the environment and human health.
基金Exploration Corporation of the Three Gorges Project The"985 project"construction project of physical geography for Nanjing University
文摘This paper describes valley bottom troughs of the Changjiang River and infers the geomorphologic development of troughs. Based on the morphology of the troughs, the following conclusions are drawn. (1) The deep troughs on the Three Gorges valley bottom are formed by river downcutting along the structural zones on the background of regional tectonic uplift at about 40-30 ka BP. (2) When river downcutting occurred in the river bed of Changjiang, the jets current (particularly eddy current) with a large number of pebbles ground and eroded the valley bottom, resulting in trough formation and deepening. Meanwhile, water currents with gravels and pebbles eroded the bank and the left wall of No.76 trough as well as the right wall of No.77 trough by striking, scouring, horizontal and vertical grinding. (3) The depth of the trough is mainly determined by the intensity of the water current and the consistency of bedrock against erosion, and is not controlled by the altitude of the sea level as the base level of erosion.
文摘Without taking inducing factors into consideration, this paper adopts a quantitative analysis of the bottom factors in the Three Gorges Reservoir area, studies the relationship between the bottom factors and the development of landslides, and then zones the area according to risk levels. The bottom factors adopted in this paper include lithological characters(U1 ), gradient(U2 ), slope form (U3), difference of helght(U4 ), and slope orientation(U5 ). In 4 650 km^2 of the studied area, the areas of the very high, high, medium and low hazard degree area respectively were 57. 94 km^2 , 2 305.15 km^2, 1 241.6 km^2, 1 045.31 km^2. The methodological steps are (1) inversion statistic analysis, (2) the analysis of contribution ratio and weighing, (3) getting results via fuzzy evaluation of risk levels.
文摘High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of mu(= h/lambda, depth to deep-water wave length ratio) and epsilon(= a/h, wave amplitude to depth ratio) for velocity potential, particle velocity vector, pressure and the Boussinesq-type equations for surface elevation eta and horizontal velocity vector (U) over right arrow at any given level in water are given. Then, the exact explicit expressions to the fourth order of mu are derived. Finally, the linear solutions of eta, (U) over right arrow, C (phase-celerity) and C-g (group velocity) for a constant water depth are obtained. Compared with the Airy theory, excellent results can be found even for a water depth as large as the wave legnth. The present high-order models are applicable to nonlinear regular and irregular waves in water of any varying depth (from shallow to deep) and bottom slope (from mild to steep).
基金The National "863" High Technology Research Foundation of China under contract No.2006AA09Z222the Fujian Province Natural Science Foundation of China under contract No.2005YZ1013
文摘The methane concentration of water samples at five stations collected by the CTD rosette water sampler in the areas of southwest Dongsha Islands and the Xisha Trough was analyzed by the gas-stripping method on aboard ship. It shows abnormal high methane concentrations in near bottom water samples at three stations. In the southwest Dongsha Islands area, the methane conc.entration of 4. 25 and 10. 64 nmol/dm3 occurs in near bottom water samples at Stas E105A and El06, respectively. In the Xisha Trough area, the high methane concentrations of 5. 17, 8.48 and 8.70 nmol/dm3 in water depths of 1 750, 1 900 and 2 050 m, respectively, have been observed at Sta. F413. It is believed that the abnormal high methane concentrations are generated from the leakage of methane from sediments. Combining with previous geophysical and geochemical data from these two areas, this was probably related to the submarine gas hydrates decomposition and cold seep system. In May 2007, gas hydrate samples were successfully obtained by the drilling in the Shenhu Sea area located in the southwest Dongsha Islands area. It is called for further drilling surveys to confirm the existence of gas hydrate and cold seep system in the Xisha Trough as early as possible.
基金supported by the National Science and Technology Major Project of China (No. 2011ZX05010-003)the National Natural Science Foundation of China (No. 10902093)
文摘Barrier impacts on water cut and critical rate of horizontal wells in bottom water-drive reservoirs have been recognized but not investigated quantitatively. Considering the existence of impermeable barriers in oil formations, this paper developed a horizontal well flow model and obtained mathematical equations for the critical rate when water cresting forms in bottom-water reservoirs. The result shows that the barrier increases the critical rate and delays water breakthrough. Further study of the barrier size and location shows that increases in the barrier size and the distance between the barrier and oil-water contact lead to higher critical rates. The critical rate gradually approaches a constant as the barrier size increases. The case study shows the method presented here can be used to predict the critical rate in a bottom-water reservoir and applied to investigate the water cresting behavior of horizontal wells.
基金The Program of International S&T Cooperation under contract No.2010DFA24470the National Science Foundation of China under contract No.41376101the Guangdong Provincial Science and Technology Planning Project under contract Nos 2012A030200002 and 2011B031100008
文摘On the basis of the measurement data pertaining to waves, current, and sediment in February 2012 in the mouth bar of the Modaomen Estuary, the Soulsby formulae with an iterative method are applied to calculating bottom shear stresses (BSS) and their effect on a sediment resuspension. Swell induced BSS have been found to be the most important part of the BSS. In this study, the correlation coefficient between a wavecurrent shear stress and SSC is 0.86, and that between current shear stresses and SSC is only 0.40. The peaks of the SSC are consistent with the height and the BSS of the swell. The swell is the main mechanism for the sediment re-suspension, and the tidal current effect on sediment re-suspension is small. The peaks of the SSC are centered on the high tidal level, and the flood tide enhances the wave shear stresses and the SSC near the bottom. The critical shear stress for sediment re-suspension at the observation station is between 0.20 and 0.30 N/m2. Tidal currents are too weak to stir up the bottom sediment into the flow, but a WCI (wave-current interaction) is strong enough to re-suspend the coarse sediment.
基金Office of Naval Research(N000140810256,N000141010774)National Science Foundation of China(41075037)+2 种基金Japan Agency for Marine-Earth Science and Technology(JAMSTEC)NASA(NNX07AG53G)NOAA(NA17RJ1230)
文摘Cloud resolving Weather Research and Forecasting(WRF)model simulations are used to investigate tropical cyclone(TC)genesis efficiency in an environment with a near bottom vortex(EBV)and an environment with a mid-level vortex(EMV).Sensitivity experiments show that the genesis timing depends greatly on initial vorticity vertical profiles.The larger the initial column integrated absolute vorticity,the greater the genesis efficiency is.Given the same column integrated absolute vorticity,a bottom vortex has higher genesis efficiency than a mid-level vortex.A common feature among these experiments is the formation of a mid-level vorticity maximum prior to TC genesis irrespective where the initial vorticity maximum locates.Both the EMV and EBV scenarios share the following development characteristics:1)a transition from non-organized cumulus-scale(~5 km)convective cells into an organized meso-vortex-scale(~50 to 100 km)system through upscale cascade processes,2)the establishment of a nearly saturated air column prior to a rapid drop of the central minimum pressure,and 3)a multiple convective-stratiform phase transition.A genesis efficiency index(GEI)is formulated that includes the following factors:initial column integrated absolute vorticity,vorticity at top of the boundary layer and vertically integrated relative humidity.The calculated GEI reflects well the simulated genesis efficiency and thus may be used to estimate how fast a tropical disturbance develops into a TC.
基金Item Sponsored by National Natural Science Foundation of China (60472095)
文摘One of the bottlenecks of the blast furnace (BF) campaign is the life length of hearth bottom. The basic reason for the erosion of hearth bottom is its direct contact with hot metal. According to the theory of heat transfer, models of BF hearth bottom are built based on the actual examples using software and VC language, and the calculated results are in good agreement with the data of BF dissection after blowing out. The temperature distribution and the capability of the resistance to erosion for different structures of hearth bottom are analyzed, especially the two prevalent kinds of hearth bottom arrangements called "the method of heat transfer" for all-carbon brick bottom and "the method of heat isolation" for ceramic synthetic hearth bottom. Features of the two kinds of hearth bottoms are analyzed. Also the different ways of protecting the hearth bottom are clarified, according to some actual examples. After that, the same essence of prolonging life, and the fact that the existence of a "protective skull" with low thermal conductivity between the hot metal and brick layers is of utmost importance are shown.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41206074 and 51205346)the Special Fund for Marine Renewable Energy (Grant Nos. GHME2011CX01 and GHME2011ZC05)
文摘The hydrodynamic performance of a bottom-hinged flap wave energy converter (WEC) is investigated through a frequency domain numerical model. The numerical model is verified through a two-dimensional analytic solution, as well as the qualitative analysis on the dynamic response of avibrating system. The concept of "optimum density" of the bottom-hinged flap is proposed, and its analytic expression is derived as well. The frequency interval in which the optimum density exists is also obtained. The analytic expression of the optimum linear damping coefficient is obtained by a bottom-hinged WEC. Some basic dynamic properties involving natural period, excitation moment, pitch amplitude, and optimum damping coefficient are analyzed and discussed in detail. In addition, this paper highlights the analysis of effects on the conversion performance of the device exerted by some important parameters. The results indicate that "the optimum linear damping period of 5.0 s" is the most ideal option in the short wave sea states with the wave period below 6.0 s. Shallow water depth, large flap thickness and low flap density are advised in the practical design of the device in short wave sea states in order to maximize power capture. In the sea state with water depth of 5.0 m and wave period of 5.0 s, the results of parametric optimization suggest a flap with the width of 8.0 m, thickness of 1.6 m, and with the density as little as possible when the optimum power take-off (PTO) damping coefficient is adopted.