期刊文献+
共找到276,663篇文章
< 1 2 250 >
每页显示 20 50 100
Enriched Constant Elements in the Boundary Element Method for Solving 2D Acoustic Problems at Higher Frequencies
1
作者 Zonglin Li Zhenyu Gao Yijun Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2159-2175,共17页
The boundary element method(BEM)is a popular method for solving acoustic wave propagation problems,especially those in exterior domains,owing to its ease in handling radiation conditions at infinity.However,BEM models... The boundary element method(BEM)is a popular method for solving acoustic wave propagation problems,especially those in exterior domains,owing to its ease in handling radiation conditions at infinity.However,BEM models must meet the requirement of 6–10 elements per wavelength,using the conventional constant,linear,or quadratic elements.Therefore,a large storage size of memory and long solution time are often needed in solving higher-frequency problems.In this work,we propose two new types of enriched elements based on conventional constant boundary elements to improve the computational efficiency of the 2D acoustic BEM.The first one uses a plane wave expansion,which can be used to model scattering problems.The second one uses a special plane wave expansion,which can be used tomodel radiation problems.Five examples are investigated to showthe advantages of the enriched elements.Compared with the conventional constant elements,the new enriched elements can deliver results with the same accuracy and in less computational time.This improvement in the computational efficiency is more evident at higher frequencies(with the nondimensional wave numbers exceeding 100).The paper concludes with the potential of our proposed enriched elements and plans for their further improvement. 展开更多
关键词 Enriched boundary elements constant elements 2D acoustic problems higher frequency
下载PDF
The Boundary Element Method for Ordinary State-Based Peridynamics
2
作者 Xue Liang Linjuan Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2807-2834,共28页
The peridynamics(PD),as a promising nonlocal continuum mechanics theory,shines in solving discontinuous problems.Up to now,various numerical methods,such as the peridynamic mesh-free particlemethod(PD-MPM),peridynamic... The peridynamics(PD),as a promising nonlocal continuum mechanics theory,shines in solving discontinuous problems.Up to now,various numerical methods,such as the peridynamic mesh-free particlemethod(PD-MPM),peridynamic finite element method(PD-FEM),and peridynamic boundary element method(PD-BEM),have been proposed.PD-BEM,in particular,outperforms other methods by eliminating spurious boundary softening,efficiently handling infinite problems,and ensuring high computational accuracy.However,the existing PD-BEM is constructed exclusively for bond-based peridynamics(BBPD)with fixed Poisson’s ratio,limiting its applicability to crack propagation problems and scenarios involving infinite or semi-infinite problems.In this paper,we address these limitations by introducing the boundary element method(BEM)for ordinary state-based peridynamics(OSPD-BEM).Additionally,we present a crack propagationmodel embeddedwithin the framework ofOSPD-BEM to simulate crack propagations.To validate the effectiveness of OSPD-BEM,we conduct four numerical examples:deformation under uniaxial loading,crack initiation in a double-notched specimen,wedge-splitting test,and threepoint bending test.The results demonstrate the accuracy and efficiency of OSPD-BEM,highlighting its capability to successfully eliminate spurious boundary softening phenomena under varying Poisson’s ratios.Moreover,OSPDBEMsignificantly reduces computational time and exhibits greater consistencywith experimental results compared to PD-MPM. 展开更多
关键词 Ordinary state-based peridynamics boundary element method crack propagation fracture toughness
下载PDF
Topology Optimization of Sound-Absorbing Materials for Two-Dimensional Acoustic Problems Using Isogeometric Boundary Element Method
3
作者 Jintao Liu Juan Zhao Xiaowei Shen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期981-1003,共23页
In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.T... In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.Taking the element density of porousmaterials as the design variable,the volume of porousmaterials as the constraint,and the minimum sound pressure or maximum scattered sound power as the design goal,the topology optimization is carried out by solid isotropic material with penalization(SIMP)method.To get a limpid 0–1 distribution,a smoothing Heaviside-like function is proposed.To obtain the gradient value of the objective function,a sensitivity analysis method based on the adjoint variable method(AVM)is proposed.To find the optimal solution,the optimization problems are solved by the method of moving asymptotes(MMA)based on gradient information.Numerical examples verify the effectiveness of the proposed topology optimization method in the optimization process of two-dimensional acoustic problems.Furthermore,the optimal distribution of sound-absorbingmaterials is highly frequency-dependent and usually needs to be performed within a frequency band. 展开更多
关键词 boundary element method isogeometric analysis two-dimensional acoustic analysis sound-absorbing materials topology optimization adjoint variable method
下载PDF
Error Analysis of A New Higher Order Boundary Element Method for A Uniform Flow Passing Cylinders
4
作者 SUN Shi-yan CUI Jie BAO Chao-ming 《China Ocean Engineering》 SCIE EI CSCD 2023年第3期369-377,共9页
A higher order boundary element method(HOBEM)is presented for inviscid flow passing cylinders in bounded or unbounded domain.The traditional boundary integral equation is established with respect to the velocity poten... A higher order boundary element method(HOBEM)is presented for inviscid flow passing cylinders in bounded or unbounded domain.The traditional boundary integral equation is established with respect to the velocity potential and its normal derivative.In present work,a new integral equation is derived for the tangential velocity.The boundary is discretized into higher order elements to ensure the continuity of slope at the element nodes.The velocity potential is also expanded with higher order shape functions,in which the unknown coefficients involve the tangential velocity.The expansion then ensures the continuities of the velocity and the slope of the boundary at element nodes.Through extensive comparison of the results for the analytical solution of cylinders,it is shown that the present HOBEM is much more accurate than the conventional BEM. 展开更多
关键词 higher order boundary element method(HOBEM) error analysis integral equations for potential and velocity cylinders
下载PDF
Boundary Element Analysis forModeⅢCrack Problems of Thin-Walled Structures from Micro-to Nano-Scales
5
作者 Bingrui Ju Wenzhen Qu Yan Gu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2677-2690,共14页
This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements... This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements for displacement and stress are derived.An exponential transformation technique is introduced to accurately calculate the nearly singular integral,which is the key task of the boundary element simulation of thin-walled structures.Three numerical experiments with different types of cracks are provided to verify the performance of the present numerical framework.Numerical results demonstrate that the present scheme is valid for modeⅢcrack problems of thin-walled structures with the thickness-to-length ratio in the microscale,even nanoscale,regime. 展开更多
关键词 boundary element nearly singular integral thin-walled structure mode III crack
下载PDF
Three-dimensional acoustic propagation model for shallow waters based on an indirect boundary element method
6
作者 Edmundo F.Lavia Juan D.Gonzalez Silvia Blanc 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期485-495,共11页
This work has a two-fold purpose.On the one hand,the theoretical formulation of a three-dimensional(3D)acoustic propagation model for shallow waters with a constant sound speed is presented,based on the boundary eleme... This work has a two-fold purpose.On the one hand,the theoretical formulation of a three-dimensional(3D)acoustic propagation model for shallow waters with a constant sound speed is presented,based on the boundary element method(BEM),which uses a half-space Green function instead of the more conventional free-space Green function.On the other hand,a numerical implementation is illustrated to explore the formulation in simple idealized cases,controlled by a few parameters,which provides necessary tests for the accuracy and performance of the model.The half-space Green's function,which has been previously used in scattering and diffraction,adds terms to the usual expressions of the integral operators without altering their continuity properties.Verifications against the wavenumber integration solution of the Pekeris waveguide suggest that the model allows an adequate prediction for the acoustic field.Likewise,numerical experiments in relation to the necessary mesh size for the description of the water-marine sediment interface lead to the conclusion that a transmission loss prediction with acceptable accuracy can be obtained with the use of a limited mesh around the desired evaluation region. 展开更多
关键词 three-dimensional acoustic propagation boundary element method half-space Green function
原文传递
Panel Acoustic Contribution Analysis in Automotive Acoustics Using Discontinuous Isogeometric Boundary Element Method
7
作者 Yi Sun Chihua Lu +2 位作者 Zhien Liu Menglei Sun Hao Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2307-2330,共24页
In automotive industries,panel acoustic contribution analysis(PACA)is used to investigate the contributions of the body panels to the acoustic pressure at a certain point of interest.Currently,PACA is implementedmostl... In automotive industries,panel acoustic contribution analysis(PACA)is used to investigate the contributions of the body panels to the acoustic pressure at a certain point of interest.Currently,PACA is implementedmostly by either experiment-based methods or traditional numerical methods.However,these schemes are effort-consuming and inefficient in solving engineering problems,thereby restraining the further development of PACA in automotive acoustics.In this work,we propose a PACA scheme using discontinuous isogeometric boundary element method(IGABEM)to build an easily implementable and efficient method to identify the relative acoustic contributions of each automotive body panel.Discontinuous IGABEMis more accurate and converges faster than continuous BEM and IGABEM in the interior sound pressure evaluation of automotive compartments.In this work,a contribution ratio is defined to estimate the relative acoustic contribution of the structure panels;it can be calculated by reusing the coefficient matrix that has already been generated in the sound pressure evaluation process.The utilization of the parallel technique enables the proposed method to be more efficient than conventional methods;it is validated in two numerical examples,including a car passenger compartment subjected to realistic boundary conditions.A sound pressure response experiment based on a steel box is conducted to verify the accuracy of the interior sound pressure calculation using discontinuous IGABEM.This work is expected to promote the practical process of IGABEM for application in automotive acoustic problems. 展开更多
关键词 PACA IGABEM discontinuous element automotive acoustics
下载PDF
Simulation of the seismic response of sedimentary basins with constant-gradient velocity along arbitrary direction using boundary element method:SH case 被引量:4
8
作者 Zengxi Ge 《Earthquake Science》 CSCD 2010年第2期149-155,共7页
We presented a boundary element method using the approximate analytical Green's function given by Sánchez-Sesma et al.Coordinate transform is introduced to extend the method to deal with the model with consta... We presented a boundary element method using the approximate analytical Green's function given by Sánchez-Sesma et al.Coordinate transform is introduced to extend the method to deal with the model with constant-gradient velocity along oblique direction.The method is validated by comparing the numerical results with other independent methods.This method provides a useful tool for analyzing local site effects.We computed seismic response for two series of models.The results in both frequency and time domains are analyzed and show complex amplification patterns.The fundamental mode of resonance is dependent not only on the velocity at the free surface but also on the velocity distribution of the whole basin.For the higher modes of vibration the heterogeneous basin also has its own characteristic. 展开更多
关键词 boundary element SH wave seismic response constant-gradient velocity
下载PDF
A simplified two-dimensional boundary element method with arbitrary uniform mean flow 被引量:2
9
作者 Bassem Barhoumi Safa Ben Hamouda Jamel Bessrour 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第4期207-221,共15页
To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrar... To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation(BIE) representation solves the two-dimensional convected Helmholtz equation(CHE) and its fundamental solution, which must satisfy a new Sommerfeld radiation condition(SRC) in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green's kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole,dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation. 展开更多
关键词 Two-dimensional convected Helmholtz equation Two-dimensional convected Green’s function Two-dimensional convected boundary element method Arbitrary uniform mean flow Two-dimensional acoustic sources
下载PDF
Resolving Domain Integral Issues in Isogeometric Boundary Element Methods via Radial Integration:A Study of Thermoelastic Analysis 被引量:1
10
作者 Shige Wang Zhongwang Wang +3 位作者 Leilei Chen Haojie Lian Xuan Peng Haibo Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第8期585-604,共20页
The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral ... The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral formulation of the governing equation.Due to the existence of thermal stress,the domain integral term appears in the boundary integral equation.We resolve this problem by incorporating radial integration method into IGABEM which converts the domain integral to the boundary integral.In this way,IGABEM can maintain its advantages in dimensionality reduction and more importantly,seamless integration of CAD and numerical analysis based on boundary representation.The algorithm is verified by numerical examples. 展开更多
关键词 Isogeometric analysis NURBS boundary element method THERMOELASTIC radial integration method
下载PDF
Introducing an effective coherence function to generate non-uniform ground motion on topographic site using time-domain boundary element method 被引量:1
11
作者 Mohsen Isari Reza Tarinejad 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第1期89-100,共12页
In this study,a comprehensive parametric analysis was performed on non-uniform excitation of V-shaped topography using the boundary element method in time domain.For this purpose,wave scattering analysis was carried o... In this study,a comprehensive parametric analysis was performed on non-uniform excitation of V-shaped topography using the boundary element method in time domain.For this purpose,wave scattering analysis was carried out on a topography subjected to the SV-wave for different predominant frequencies and shape ratios.Based on the numerical results,new coherence and time delay functions are proposed to generate non-uniform ground motion for topographic irregularities.The efficiency and accuracy of the proposed functions for real engineering problems are indicated by comparison with observations reported in previous literature. 展开更多
关键词 site effect time delay boundary element method AMPLIFICATION coherence function
下载PDF
Isogeometric Boundary Element Analysis for 2D Transient Heat Conduction Problem with Radial Integration Method 被引量:1
12
作者 Leilei Chen Kunpeng Li +3 位作者 Xuan Peng Haojie Lian Xiao Lin Zhuojia Fu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第1期125-146,共22页
This paper presents an isogeometric boundary element method(IGABEM)for transient heat conduction analysis.The Non-Uniform Rational B-spline(NURBS)basis functions,which are used to construct the geometry of the structu... This paper presents an isogeometric boundary element method(IGABEM)for transient heat conduction analysis.The Non-Uniform Rational B-spline(NURBS)basis functions,which are used to construct the geometry of the structures,are employed to discretize the physical unknowns in the boundary integral formulations of the governing equations.Bezier extraction technique is employed to accelerate the evaluation of NURBS basis functions.We adopt a radial integration method to address the additional domain integrals.The numerical examples demonstrate the advantage of IGABEM in dimension reduction and the seamless connection between CAD and numerical analysis. 展开更多
关键词 Isogeometric analysis NURBS boundary element method heat conduction radial integration method
下载PDF
Weakly Singular Symmetric Galerkin Boundary Element Method for Fracture Analysis of Three-Dimensional Structures Considering Rotational Inertia and Gravitational Forces 被引量:1
13
作者 Shuangxin He Chaoyang Wang +2 位作者 Xuan Zhou Leiting Dong Satya N.Atluri 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第6期1857-1882,共26页
The Symmetric Galerkin Boundary Element Method is advantageous for the linear elastic fracture and crackgrowth analysis of solid structures,because only boundary and crack-surface elements are needed.However,for engin... The Symmetric Galerkin Boundary Element Method is advantageous for the linear elastic fracture and crackgrowth analysis of solid structures,because only boundary and crack-surface elements are needed.However,for engineering structures subjected to body forces such as rotational inertia and gravitational loads,additional domain integral terms in the Galerkin boundary integral equation will necessitate meshing of the interior of the domain.In this study,weakly-singular SGBEM for fracture analysis of three-dimensional structures considering rotational inertia and gravitational forces are developed.By using divergence theorem or alternatively the radial integration method,the domain integral terms caused by body forces are transformed into boundary integrals.And due to the weak singularity of the formulated boundary integral equations,a simple Gauss-Legendre quadrature with a few integral points is sufficient for numerically evaluating the SGBEM equations.Some numerical examples are presented to verify this approach and results are compared with benchmark solutions. 展开更多
关键词 Symmetric Galerkin boundary element method rotational inertia gravitational force weak singularity stress intensity factor
下载PDF
A Parallel Boundary Element Formulation for Tracking Multiple Particle Trajectories in Stoke’s Flow for Microfluidic Applications 被引量:1
14
作者 Z.Karakaya B.Baranoglu +1 位作者 B.Çetin A.Yazici 《Computer Modeling in Engineering & Sciences》 SCIE EI 2015年第3期227-249,共23页
A new formulation for tracking multiple particles in slow viscous flow for microfluidic applications is presented.The method employs the manipulation of the boundary element matrices so that finally a system of equati... A new formulation for tracking multiple particles in slow viscous flow for microfluidic applications is presented.The method employs the manipulation of the boundary element matrices so that finally a system of equations is obtained relating the rigid body velocities of the particle to the forces applied on the particle.The formulation is specially designed for particle trajectory tracking and involves successive matrix multiplications for which SMP(Symmetric multiprocessing)parallelisation is applied.It is observed that present formulation offers an efficient numerical model to be used for particle tracking and can easily be extended for multiphysics simulations in which several physics involved. 展开更多
关键词 boundary element Method particle tracking Stoke's flow parallel computing
下载PDF
Interpolating Isogeometric Boundary Node Method and Isogeometric Boundary Element Method Based on Parameter Space 被引量:1
15
作者 Hongyin Yang Jiwei Zhong +2 位作者 Ying Wang Xingquan Chen Xiaoya Bian 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第9期807-824,共18页
In this paper,general interpolating isogeometric boundary node method(IIBNM)and isogeometric boundary element method(IBEM)based on parameter space are proposed for 2D elasticity problems.In both methods,the integral c... In this paper,general interpolating isogeometric boundary node method(IIBNM)and isogeometric boundary element method(IBEM)based on parameter space are proposed for 2D elasticity problems.In both methods,the integral cells and elements are defined in parameter space,which can reproduce the geometry exactly at all the stages.In IIBNM,the improved interpolating moving leastsquare method(IIMLS)is applied for field approximation and the shape functions have the delta function property.The Lagrangian basis functions are used for field approximation in IBEM.Thus,the boundary conditions can be imposed directly in both methods.The shape functions are defined in 1D parameter space and no curve length needs to be computed.Besides,most methods for the treatment of the singular integrals in the boundary element method can be applied in IIBNM and IBEM directly.Numerical examples have demonstrated the accuracy of the proposed methods. 展开更多
关键词 Interpolating isogeometric boundary node method isogeometric boundary element method parameter space improved interpolating moving least-square method Lagrangian basis functions
下载PDF
Subdivision Surface-Based Isogeometric Boundary Element Method for Steady Heat Conduction Problems with Variable Coefficient 被引量:1
16
作者 Xiuyun Chen Xiaomeng Yin +3 位作者 Kunpeng Li Ruhui Cheng Yanming Xu Wei Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第10期323-339,共17页
The present work couples isogeometric analysis(IGA)and boundary element methods(BEM)for three dimensional steady heat conduction problems with variable coefficients.The Computer-Aided Design(CAD)geometries are built b... The present work couples isogeometric analysis(IGA)and boundary element methods(BEM)for three dimensional steady heat conduction problems with variable coefficients.The Computer-Aided Design(CAD)geometries are built by subdivision surfaces,and meantime the basis functions of subdivision surfaces are employed to discretize the boundary integral equations for heat conduction analysis.Moreover,the radial integration method is adopted to transform the additional domain integrals caused by variable coefficients to the boundary integrals.Several numerical examples are provided to demonstrate the correctness and advantages of the proposed algorithm in the integration of CAD and numerical analysis. 展开更多
关键词 Subdivision surface isogeometric boundary element method heat conduction radial integration
下载PDF
Machine Learning Enhanced Boundary Element Method:Prediction of Gaussian Quadrature Points 被引量:1
17
作者 Ruhui Cheng Xiaomeng Yin Leilei Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第4期445-464,共20页
This paper applies a machine learning technique to find a general and efficient numerical integration scheme for boundary element methods.A model based on the neural network multi-classification algorithmis constructe... This paper applies a machine learning technique to find a general and efficient numerical integration scheme for boundary element methods.A model based on the neural network multi-classification algorithmis constructed to find the minimum number of Gaussian quadrature points satisfying the given accuracy.The constructed model is trained by using a large amount of data calculated in the traditional boundary element method and the optimal network architecture is selected.The two-dimensional potential problem of a circular structure is tested and analyzed based on the determined model,and the accuracy of the model is about 90%.Finally,by incorporating the predicted Gaussian quadrature points into the boundary element analysis,we find that the numerical solution and the analytical solution are in good agreement,which verifies the robustness of the proposed method. 展开更多
关键词 Machine learning boundary element method Gaussian quadrature points classification problems
下载PDF
Boundary Element Modeling of Multiconnected Ocean Basin in Visakhapatnam Port Under the Resonance Conditions
18
作者 Prashant KUMAR Prachi PRIYA RAJNI 《China Ocean Engineering》 SCIE EI CSCD 2021年第5期662-675,共14页
A mathematical model has been developed to analyze the influence of extreme water waves over multiconnected regions in Visakhapatnam Port,India by considering an average water depth in each multiconnected regions.In a... A mathematical model has been developed to analyze the influence of extreme water waves over multiconnected regions in Visakhapatnam Port,India by considering an average water depth in each multiconnected regions.In addition,partial reflection of incident waves on coastal boundary is also considered.The domain of interest is divided mainly into two regions,i.e.,open sea region and harbor region namely as Region-I and Region-II,respectively.Further,Region-II is divided into multiple connected regions.The 2-D boundary element method(BEM)including the Chebyshev point discretization is utilized to solve the Helmholtz equation in each region separately to determine the wave amplification.The numerical convergence is performed to obtain the optimum numerical accuracy and the validation of the current numerical approach is also conducted by comparing the simulation results with existing studies.The four key spots based on the moored ship locations in Visakhapatnam Port are identified to perform the numerical simulation.The wave amplification at these locations is estimated for monochromatic incident waves,considering approximate water depth and different reflection coefficients on the wall of port under the resonance conditions.In addition,wave field analysis inside the Visakhapatnam Port is also conducted to understand resonance conditions.The current numerical model provides an efficient tool to analyze the amplification on any realistic ports or harbors. 展开更多
关键词 boundary element method amplification factor Helmholtz equation reflection coefficient Visakhapatnam Port
下载PDF
Isogeometric Boundary Element Method for Two-Dimensional Steady-State Non-Homogeneous Heat Conduction Problem
19
作者 Yongsong Li Xiaomeng Yin Yanming Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第8期471-488,共18页
The isogeometric boundary element technique(IGABEM)is presented in this study for steady-state inhomogeneous heat conduction analysis.The physical unknowns in the boundary integral formulations of the governing equati... The isogeometric boundary element technique(IGABEM)is presented in this study for steady-state inhomogeneous heat conduction analysis.The physical unknowns in the boundary integral formulations of the governing equations are discretized using non-uniform rational B-spline(NURBS)basis functions,which are utilized to build the geometry of the structures.To speed up the assessment of NURBS basis functions,the Bezier extraction´approach is used.To solve the extra domain integrals,we use a radial integration approach.The numerical examples show the potential of IGABEM for dimension reduction and smooth integration of CAD and numerical analysis. 展开更多
关键词 Isogeometric analysis NURBS boundary element method heat conduction NON-HOMOGENEOUS radial integration method
下载PDF
STRAIGHTFORWARD MULTI-SCALE BOUNDARY ELEMENT METHOD FOR GLOBAL/LOCAL MECHANICAL ANALYSIS OF ELASTIC HETEROGENEOUS MATERIAL
20
作者 高希光 宋迎东 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第2期145-154,共10页
A straightforward multi-scale boundary element method is proposed for global and local mechanical analysis of heterogeneous material.The method is more accurate and convenient than finite element based multi-scale met... A straightforward multi-scale boundary element method is proposed for global and local mechanical analysis of heterogeneous material.The method is more accurate and convenient than finite element based multi-scale method.The formulations of this method are derived by combining the homogenization approach and the fundamental equations of boundary element method.The solution gives the convenient formulations to compute global elastic constants and the local stress field.Finally,two numerical examples of porous material are presented to prove the accuracy and the efficiency of the proposed method.The results show that the method does not require the iteration to obtain the solution of the displacement in micro level. 展开更多
关键词 multi-scale method boundary element method MICROSTRUCTURE homogenization method global elastic properties
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部