The relentless progress in the research of geographic spatial data models and their application scenarios is propelling an unprecedented rich Level of Detail(LoD)in realistic 3D representation and smart cities.This pu...The relentless progress in the research of geographic spatial data models and their application scenarios is propelling an unprecedented rich Level of Detail(LoD)in realistic 3D representation and smart cities.This pursuit of rich details not only adds complexity to entity models but also poses significant computational challenges for model visualization and 3D GIS.This paper introduces a novel method for deriving multi-LOD models,which can enhance the efficiency of spatial computing in complex 3D building models.Firstly,we extract multiple facades from a 3D building model(LoD3)and convert them into individual semantic facade models.Through the utilization of the developed facade layout graph,each semantic facade model is then transformed into a parametric model.Furthermore,we explore the specification of geometric and semantic details in building facades and define three different LODs for facades,offering a unique expression.Finally,an innovative heuristic method is introduced to simplify the parameterized facade.Through rigorous experimentation and evaluation,the effectiveness of the proposed parameterization methodology in capturing complex geometric details,semantic richness,and topological relationships of 3D building models is demonstrated.展开更多
Building energy performance is a function of numerous building parameters.In this study,sensitivity analysis on twenty parameters is performed to determine the top three parameters that have the most significant impac...Building energy performance is a function of numerous building parameters.In this study,sensitivity analysis on twenty parameters is performed to determine the top three parameters that have the most significant impact on the energy performance of buildings.Actual data from two fully operational commercial buildings were collected and used to develop a building energy model in the Quick Energy Simulation Tool(eQUEST).The model is calibrated using the Normalized Mean Bias Error(NMBE)and Coefficient of Variation of Root Mean Square Error(CV(RMSE))method.The model satisfies the NMBE and CV(RMSE)criteria set by the American Society of Heating,Refrigeration,and Air-Conditioning(ASHRAE)Guideline 14,Federal Energy Management Program(FEMP),and International Performance Measurement and Verification Protocol(IPMVP)for building energy model calibration.The values of the parameters are varied in two levels,and then the percentage change in output is calculated.Fractional factorial analysis on eight parameters with the highest percentage change in energy performance is performed at two levels in a statistical software JMP.For building A,the top 3 parameters from the percentage change method are:Heating setpoint,cooling setpoint and server room.From fractional factorial design,the top 3 parameters are:heating setpoint(p-value=0.00129),cooling setpoint(p-value=0.00133),and setback control(p-value=0.00317).For building B,the top 3 parameters from both methods are:Server room(pvalue=0.0000),heating setpoint(p-value=0.00014),and cooling setpoint(p-value=0.00035).If the best values for all top three parameters are taken simultaneously,energy efficiency improves by 29%for building A and 35%for building B.展开更多
Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to ...Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.展开更多
The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the a...The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the application of BIM technology.This paper summarizes and analyzes the whole-process project cost management based on BIM,aiming to explore its application and development prospects in the construction industry.Firstly,this paper introduces the role and advantages of BIM technology in engineering cost management,including information integration,data sharing,and collaborative work.Secondly,the paper analyzes the key technologies and methods of the whole-process project cost management based on BIM,including model construction,data management,and cost control.In addition,the paper also discusses the challenges and limitations of the whole-process BIM project cost management,such as the inconsistency of technical standards,personnel training,and consciousness change.Finally,the paper summarizes the advantages and development prospects of the whole-process project cost management based on BIM and puts forward the direction and suggestions for future research.Through the research of this paper,it can provide a reference for construction cost management and promote innovation and development in the construction industry.展开更多
Computer vision-based inspection methods show promise for automating post-earthquake building inspections.These methods survey a building with unmanned aerial vehicles and automatically detect damage in the collected ...Computer vision-based inspection methods show promise for automating post-earthquake building inspections.These methods survey a building with unmanned aerial vehicles and automatically detect damage in the collected images.Nevertheless,assessing the damage′s impact on structural safety requires localizing damage to specific building components with known design and function.This paper proposes a BIM-based automated inspection framework to provide context for visual surveys.A deep learning-based semantic segmentation algorithm is trained to automatically identify damage in images.The BIM automatically associates any identified damage with specific building components.Then,components are classified into damage states consistent with component fragility models for integration with a structural analysis.To demonstrate the framework,methods are developed to photorealistically simulate severe structural damage in a synthetic computer graphics environment.A graphics model of a real building in Urbana,Illinois,is generated to test the framework;the model is integrated with a structural analysis to apply earthquake damage in a physically realistic manner.A simulated UAV survey is flown of the graphics model and the framework is applied.The method achieves high accuracy in assigning damage states to visible structural components.This assignment enables integration with a performance-based earthquake assessment to classify building safety.展开更多
This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approxi...This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.展开更多
The growing demand for current and precise geographic information that pertains to urban areas has given rise to a significant interest in digital surface models that exhibit a high level of detail. Traditional method...The growing demand for current and precise geographic information that pertains to urban areas has given rise to a significant interest in digital surface models that exhibit a high level of detail. Traditional methods for creating digital surface models are insufficient to reflect the details of earth’s features. These models only represent three-dimensional objects in a single texture and fail to offer a realistic depiction of the real world. Furthermore, the need for current and precise geographic information regarding urban areas has been increasing significantly. This study proposes a new technique to address this problem, which involves integrating remote sensing, Geographic Information Systems (GIS), and Architecture Environment software environments to generate a detailed three-dimensional model. The processing of this study starts with: 1) Downloading high-resolution satellite imagery; 2) Collecting ground truth datasets from fieldwork; 3) Imaging nose removing; 4) Generating a Two-dimensional Model to create a digital surface model in GIS using the extracted building outlines; 5) Converting the model into multi-patch layers to construct a 3D model for each object separately. The results show that the 3D model obtained through this method is highly detailed and effective for various applications, including environmental studies, urban development, expansion planning, and shape understanding tasks.展开更多
The use of three-dimensional maps is more effective than two-dimensional maps in representing the Earth’s surface. However, the traditional methods used to create digital surface models are not efficient for capturin...The use of three-dimensional maps is more effective than two-dimensional maps in representing the Earth’s surface. However, the traditional methods used to create digital surface models are not efficient for capturing the details of Earth’s features. This is because they represent only three-dimensional objects in a single texture and do not provide a realistic representation of the real world. Additionally, there is a growing demand for up-to-date and accurate geo-information, particularly in urban areas. To address this challenge, a new technique is proposed in this study that involves integrating remote sensing, Geographic Information System, and Architecture Environment software to generate a highly-detailed three-dimensional model. The method described in this study includes several steps such as acquiring high-resolution satellite imagery, gathering ground truth data, performing radiometric and geometric corrections during image preprocessing, producing a 2D map of the region of interest, constructing a digital surface model by extending the building outlines, and transforming the model into multi-patch layers to create a 3D model for each object individually. The research findings indicate that the digital surface model obtained with comprehensive information is suitable for different purposes, such as environmental research, urban development and expansion planning, and shape recognition tasks.展开更多
In this work, we present numerical modelling of coupled heat and mass transfer within porous materials. Our study focuses on cinder block bricks generally used in building construction. The material is assumed to be p...In this work, we present numerical modelling of coupled heat and mass transfer within porous materials. Our study focuses on cinder block bricks generally used in building construction. The material is assumed to be placed in air. Moisture content and temperature have been chosen as the main transfer drivers and the equations governing these transfer drivers are based on the Luikov model. These equations are solved by an implicit finite difference scheme. A Fortran code associated with the Thomas algorithm was used to solve the equations. The results show that heat and mass transfer depend on the temperature of the air in contact with the material. As this air temperature rises, the temperature within the material increases, and more rapidly at the material surface. Also, thermal conductivity plays a very important role in the thermal conduction of building materials and influences heat and mass transfer in these materials. Materials with higher thermal conductivity diffuse more heat.展开更多
Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to effici...Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to efficiently model underground pipeline networks,using the building information modeling(BIM)-based software Revit.The system comprises separate pipe point and tubulation models.Using a Revit application programming interface(API),the spatial position and attribute data of the pipe points are extracted from a pipeline database,and the corresponding tubulation data are extracted from a tubulation database.Using the Family class in Revit API,the cluster in the self-built library of pipe point is inserted into the spatial location and the attribute data is added;in the same way,all pipeline instances in the pipeline system are created.The extension and localization of the model accelerated the modeling speed.The system was then used in a real construction project.The expansion of the model database and rapid modeling made the application of BIM technology in three-dimensional visualization of underground pipeline networks more convenient.Furthermore,it has applications in pipeline engineering construction and management.展开更多
An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn’t depend on system’s physical parameters. The rotor can be reliably suspended und...An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn’t depend on system’s physical parameters. The rotor can be reliably suspended under the unit feedback control system designed with the primary dynamic model obtained. Online identification in frequency domain is processed to give the precise model. Comparisons show that the experimental method is much closer to the precise model than the theoretic method based on magnetic circuit law. So this experimental method is a good choice to build the primary dynamic model of AMSS.展开更多
Energy consumption reduction efforts in the residential buildings sector represent socio-economical, technological and environmental preoccupations which justify advanced scientific research. These lead to use inverse...Energy consumption reduction efforts in the residential buildings sector represent socio-economical, technological and environmental preoccupations which justify advanced scientific research. These lead to use inverse models to describe thermal behavior and to evaluate the energy consumption of buildings. Their principal goal is to provide supporting evidence of enhanced energy performances and predictions. More specifically, research questions are related to building thermal modeling which is the most appropriate in a smart grid context. In this context, the models are reviewed according to three categories. The first category is based on physical and basic principle modeling (white-box). The second offers a much simpler structure which is the statistical models (black-box). The black-box is used for prediction of energy consumption and heating/ cooling demands. Finally, the third category is a hybrid method (grey-box), which uses both physical and statistical modeling techniques. In this paper, we propose a detailed review and simulation of the main thermal building models. Our comparison and simulation results demonstrate that the grey-box is the most effective model for management of buildings energy consumption.展开更多
Throughout the life cycle, the buildings emit a great deal of carbon dioxide into the atmosphere, which directly leads to aggravation in the greenhouse effect and becomes a severe threat to the environment and humans....Throughout the life cycle, the buildings emit a great deal of carbon dioxide into the atmosphere, which directly leads to aggravation in the greenhouse effect and becomes a severe threat to the environment and humans. Researchers have made numerous efforts to accurately calculate emissions to reduce the life cycle carbon emissions of residential buildings. Nevertheless, there are still difficulties in quickly estimating carbon emissions in the design stage without specific data. To fill this gap, the study, based on Life Cycle Assessment (LCA) and Building Information Modeling (BIM), proposed a quick method for estimating Building’s Life Cycle Carbon Emissions (BLCCE). Taking a hospital building in Chuzhou City, Anhui Province, China as an example, it tested its possibility to estimate BLCCE. The results manifested that: 1) the BLCCE of the project is 40,083.56 tCO2-eq, and the carbon emissions per square meter per year are 119.91 kgCO2-eq/(m2·y);2) the stage of construction, operational and demolition account for 7.90%, 91.31%, and 0.79% of BLCCE, respectively;3) the annual carbon emissions per square meter of hospital are apparently higher than that of villa, residence, and office building, due to larger service population, longer daily operation time, and stricter patient comfort requirements. Considering the lack of BLCCE research in Chinese hospitals, this case study will provide a valuable reference for the estimated BLCCE of hospital building.展开更多
To comply with the strategic goal of "mass entrepreneurship and innovation",universities and col eges adjusted the discipline cultivation objective to be cultivation of innovational and enterprising talents....To comply with the strategic goal of "mass entrepreneurship and innovation",universities and col eges adjusted the discipline cultivation objective to be cultivation of innovational and enterprising talents.Innovational and enterprising talents are inseparable from creative thinking,while the cultivation of creative thinking is the basis of cultivation of innovational and enterprising talents.This paper discussed cultivation of students' creative thinking through making building models in basic course of architectural design.Besides,it analyzed the relation between making of building models and creative thinking from divergent thinking,multi-directional thinking,element changing thinking,conversion thinking,and reverse thinking.It is expected to cultivate students' creative thinking through building models,to lay a solid foundation for architectural design courses,and to provide more architectural designers with more solid foundation and creative thinking.展开更多
New development in urban planning, cityscape, real estate management and the like, calls for new demands for 3D city model. There are so many objects in 3D city model such as building, river, road, and so on. The buil...New development in urban planning, cityscape, real estate management and the like, calls for new demands for 3D city model. There are so many objects in 3D city model such as building, river, road, and so on. The building model is very important in 3D city model. In recent years,a lot of research work about visualization has been done. In our opinions,visualization is only a part of 313 city model, while interactive operation about buildings is rather important as well. In order to implement interactive operation (create , edit, query,etc. ), good data structure and model must be developed.展开更多
Building Information Modelling (BIM) is a technology and a process that has brought changes in the construction’s traditional procurement system. Kenya lacks contractual guidelines on implementation of BIM;this makes...Building Information Modelling (BIM) is a technology and a process that has brought changes in the construction’s traditional procurement system. Kenya lacks contractual guidelines on implementation of BIM;this makes the adoption of BIM slow and difficult. Previous research has identified a gap in contractual relationships, roles and resulting risks. The objectives of this study were to investigate BIM adoption in Nairobi and to investigate the influence of BIM on Engineering Contract Management (ECM)</span><span style="font-family:Verdana;"> in Nairobi Kenya</span><span style="font-family:Verdana;">. The survey research was a descriptive study with 175 responsive questionnaires. Respondents comprised of Civil Engineers, Construction Project Managers, Architects, Quantity Surveyors, Contractors and Facility Managers. Data was collected through self-administered questionnaire and in-depth interview. Descriptive analytics, correlation and Exploratory factor analysis methods were used to analyse quantitative data. Qualitative data was analysed thematically. It emerged that adoption level was at 56.6% and shallow understanding of BIM capabilities remains to be a barrier to its adoption and implementation. It also emerged that BIM improves ECM;when time, cost, quality, collaboration and return on investment improve, ECM becomes easier. Latent factors found in BIM and ECM relationship were Legal Implications, awareness and knowledge, efficiency, versatility, mandate and leadership, and competitiveness. Further, the study found out that BIM influence on ECM demands for establishment of standards, guidelines, policy, legal framework, and regulations, which can be achieved by amending the public procurement act which dictates the operation of all the other standard forms of contract. Further research should be conducted to measure whether the understanding of BIM had positively improved.展开更多
Heat conduction through conventional and interlocking building bricks with cavities was studied in this work. Heat transfer analysis was carried out using MATLAB? partial differential equation toolbox. Regular and sta...Heat conduction through conventional and interlocking building bricks with cavities was studied in this work. Heat transfer analysis was carried out using MATLAB? partial differential equation toolbox. Regular and staggered hole arrangements were studied. Results showed that four staggered holed interlocking bricks were effective in thermal resistance into the bricks and increasing the holes beyond four did not give any thermal resistance advantage. For the conventional bricks staggered holes did not give any thermal resistance advantage but the four-holed bricks were also adjudged to be effective in thermal resistance into the brick surface. Increasing the number of holes beyond four in conventional bricks did give some thermal resistivity advantage but very minimal. Structural strengths of holed bricks were not considered in this study.展开更多
AR (augmented reality) is a technology that adds information to the real world adding virtual elements to its visualization in real time. AR used in AECO (architectural, engineering, construction and operations) c...AR (augmented reality) is a technology that adds information to the real world adding virtual elements to its visualization in real time. AR used in AECO (architectural, engineering, construction and operations) can contribute in augmenting visualization during design, construction and operation of the buildings. This article presents a study that applies AR to building assessment with BIM (building information) model visualization. The use of AR on existing applications for smart phones and tablets is validated. AR proposed an adaptation of the method of POE (post-occupancy evaluation) subsidized. Traditional POE process model involves three phases: planning, conducting and applying. In order to incorporate AR, it is proposed a total restructuring of the planning phase, developing the research instruments in three steps: 3D modeling, model treatment and AR application development. It was observed that for POE studies, the 3D models are in large scale and need to be detailed for precise comparison. BIM models for facility management, representing building use situation, are of the highest level of detail. A balanced point between simplicity and representativeness was the solution adopted in this experiment for uploading and downloading performance issues. This article presents and discusses findings for the new proposition for the activity of research instruments development for the planning phase of POE with AR as well as initial tests with first results and difficulties faced.展开更多
Global concerns toward environmental issues have induced growing demand for new approaches in the construction because of its considerable impact on the environment and use of natural resources. Through using construc...Global concerns toward environmental issues have induced growing demand for new approaches in the construction because of its considerable impact on the environment and use of natural resources. Through using construction sustainability tools, methods and techniques, a greener design can be applied during various building phases. In this connection, it is argued that the analytical and integrated models applied by Building Information Modelling (BIM) may also facilitate this process to be performed more efficiently. BIM and construction sustainability are quite different initiatives, but both have received much attention in recent years in the architecture, engineering and construction (AEC) industry. A rigorous analysis of the interactions between them implies that a synergy exists which, if properly it is understood that can be helpful to reduce the environmental impacts of the AEC industry. A BIM-based design model can contribute to sustainability through its three main dimensions which are environmental, economic and social. In this paper, by reviewing the existing literature on BIM and construction sustainability and using a matrix to analyze construction sustainability dimensions and BIM functionalities a number of interactions have been discussed. It can be concluded that despite there are many improvements in implementation of BIM in environmental and economic aspects of sustainability, its potential impact on social dimension has not been explicitly explored hence further studies need to be undertaken in this area.展开更多
基金National Natural Science of China(No.42201463)Guangxi Natural Science Foundation(No.2023GXNSFBA026350)+1 种基金Special Fund of Guangxi Science and Technology Base and Talent(Nos.Guike AD22035158,Guike AD23026167)Guangxi Young and Middle-aged Teachers’Basic Scientific Research Ability Improvement Project(No.2023KY0056).
文摘The relentless progress in the research of geographic spatial data models and their application scenarios is propelling an unprecedented rich Level of Detail(LoD)in realistic 3D representation and smart cities.This pursuit of rich details not only adds complexity to entity models but also poses significant computational challenges for model visualization and 3D GIS.This paper introduces a novel method for deriving multi-LOD models,which can enhance the efficiency of spatial computing in complex 3D building models.Firstly,we extract multiple facades from a 3D building model(LoD3)and convert them into individual semantic facade models.Through the utilization of the developed facade layout graph,each semantic facade model is then transformed into a parametric model.Furthermore,we explore the specification of geometric and semantic details in building facades and define three different LODs for facades,offering a unique expression.Finally,an innovative heuristic method is introduced to simplify the parameterized facade.Through rigorous experimentation and evaluation,the effectiveness of the proposed parameterization methodology in capturing complex geometric details,semantic richness,and topological relationships of 3D building models is demonstrated.
基金funded in part by the Industrial Assessment Center Projectsupported by grants fromthe US Department of Energy and by the West Virginia Development Office.
文摘Building energy performance is a function of numerous building parameters.In this study,sensitivity analysis on twenty parameters is performed to determine the top three parameters that have the most significant impact on the energy performance of buildings.Actual data from two fully operational commercial buildings were collected and used to develop a building energy model in the Quick Energy Simulation Tool(eQUEST).The model is calibrated using the Normalized Mean Bias Error(NMBE)and Coefficient of Variation of Root Mean Square Error(CV(RMSE))method.The model satisfies the NMBE and CV(RMSE)criteria set by the American Society of Heating,Refrigeration,and Air-Conditioning(ASHRAE)Guideline 14,Federal Energy Management Program(FEMP),and International Performance Measurement and Verification Protocol(IPMVP)for building energy model calibration.The values of the parameters are varied in two levels,and then the percentage change in output is calculated.Fractional factorial analysis on eight parameters with the highest percentage change in energy performance is performed at two levels in a statistical software JMP.For building A,the top 3 parameters from the percentage change method are:Heating setpoint,cooling setpoint and server room.From fractional factorial design,the top 3 parameters are:heating setpoint(p-value=0.00129),cooling setpoint(p-value=0.00133),and setback control(p-value=0.00317).For building B,the top 3 parameters from both methods are:Server room(pvalue=0.0000),heating setpoint(p-value=0.00014),and cooling setpoint(p-value=0.00035).If the best values for all top three parameters are taken simultaneously,energy efficiency improves by 29%for building A and 35%for building B.
文摘Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.
文摘The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the application of BIM technology.This paper summarizes and analyzes the whole-process project cost management based on BIM,aiming to explore its application and development prospects in the construction industry.Firstly,this paper introduces the role and advantages of BIM technology in engineering cost management,including information integration,data sharing,and collaborative work.Secondly,the paper analyzes the key technologies and methods of the whole-process project cost management based on BIM,including model construction,data management,and cost control.In addition,the paper also discusses the challenges and limitations of the whole-process BIM project cost management,such as the inconsistency of technical standards,personnel training,and consciousness change.Finally,the paper summarizes the advantages and development prospects of the whole-process project cost management based on BIM and puts forward the direction and suggestions for future research.Through the research of this paper,it can provide a reference for construction cost management and promote innovation and development in the construction industry.
基金Financial support for this research was provided in part by the US Army Corps of Engineers through a subaward from the University of California,San Diego,USA。
文摘Computer vision-based inspection methods show promise for automating post-earthquake building inspections.These methods survey a building with unmanned aerial vehicles and automatically detect damage in the collected images.Nevertheless,assessing the damage′s impact on structural safety requires localizing damage to specific building components with known design and function.This paper proposes a BIM-based automated inspection framework to provide context for visual surveys.A deep learning-based semantic segmentation algorithm is trained to automatically identify damage in images.The BIM automatically associates any identified damage with specific building components.Then,components are classified into damage states consistent with component fragility models for integration with a structural analysis.To demonstrate the framework,methods are developed to photorealistically simulate severe structural damage in a synthetic computer graphics environment.A graphics model of a real building in Urbana,Illinois,is generated to test the framework;the model is integrated with a structural analysis to apply earthquake damage in a physically realistic manner.A simulated UAV survey is flown of the graphics model and the framework is applied.The method achieves high accuracy in assigning damage states to visible structural components.This assignment enables integration with a performance-based earthquake assessment to classify building safety.
文摘This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.
文摘The growing demand for current and precise geographic information that pertains to urban areas has given rise to a significant interest in digital surface models that exhibit a high level of detail. Traditional methods for creating digital surface models are insufficient to reflect the details of earth’s features. These models only represent three-dimensional objects in a single texture and fail to offer a realistic depiction of the real world. Furthermore, the need for current and precise geographic information regarding urban areas has been increasing significantly. This study proposes a new technique to address this problem, which involves integrating remote sensing, Geographic Information Systems (GIS), and Architecture Environment software environments to generate a detailed three-dimensional model. The processing of this study starts with: 1) Downloading high-resolution satellite imagery; 2) Collecting ground truth datasets from fieldwork; 3) Imaging nose removing; 4) Generating a Two-dimensional Model to create a digital surface model in GIS using the extracted building outlines; 5) Converting the model into multi-patch layers to construct a 3D model for each object separately. The results show that the 3D model obtained through this method is highly detailed and effective for various applications, including environmental studies, urban development, expansion planning, and shape understanding tasks.
文摘The use of three-dimensional maps is more effective than two-dimensional maps in representing the Earth’s surface. However, the traditional methods used to create digital surface models are not efficient for capturing the details of Earth’s features. This is because they represent only three-dimensional objects in a single texture and do not provide a realistic representation of the real world. Additionally, there is a growing demand for up-to-date and accurate geo-information, particularly in urban areas. To address this challenge, a new technique is proposed in this study that involves integrating remote sensing, Geographic Information System, and Architecture Environment software to generate a highly-detailed three-dimensional model. The method described in this study includes several steps such as acquiring high-resolution satellite imagery, gathering ground truth data, performing radiometric and geometric corrections during image preprocessing, producing a 2D map of the region of interest, constructing a digital surface model by extending the building outlines, and transforming the model into multi-patch layers to create a 3D model for each object individually. The research findings indicate that the digital surface model obtained with comprehensive information is suitable for different purposes, such as environmental research, urban development and expansion planning, and shape recognition tasks.
文摘In this work, we present numerical modelling of coupled heat and mass transfer within porous materials. Our study focuses on cinder block bricks generally used in building construction. The material is assumed to be placed in air. Moisture content and temperature have been chosen as the main transfer drivers and the equations governing these transfer drivers are based on the Luikov model. These equations are solved by an implicit finite difference scheme. A Fortran code associated with the Thomas algorithm was used to solve the equations. The results show that heat and mass transfer depend on the temperature of the air in contact with the material. As this air temperature rises, the temperature within the material increases, and more rapidly at the material surface. Also, thermal conductivity plays a very important role in the thermal conduction of building materials and influences heat and mass transfer in these materials. Materials with higher thermal conductivity diffuse more heat.
基金supported by a grant(No.14DZ2292800,http://www.greengeo.net/)from“Technology Service Platform of Civil Engineering”of Science and Technology Commission of Shanghai Municipality.
文摘Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to efficiently model underground pipeline networks,using the building information modeling(BIM)-based software Revit.The system comprises separate pipe point and tubulation models.Using a Revit application programming interface(API),the spatial position and attribute data of the pipe points are extracted from a pipeline database,and the corresponding tubulation data are extracted from a tubulation database.Using the Family class in Revit API,the cluster in the self-built library of pipe point is inserted into the spatial location and the attribute data is added;in the same way,all pipeline instances in the pipeline system are created.The extension and localization of the model accelerated the modeling speed.The system was then used in a real construction project.The expansion of the model database and rapid modeling made the application of BIM technology in three-dimensional visualization of underground pipeline networks more convenient.Furthermore,it has applications in pipeline engineering construction and management.
基金Supported by the National Nature Foundation of China (No.59975073)
文摘An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn’t depend on system’s physical parameters. The rotor can be reliably suspended under the unit feedback control system designed with the primary dynamic model obtained. Online identification in frequency domain is processed to give the precise model. Comparisons show that the experimental method is much closer to the precise model than the theoretic method based on magnetic circuit law. So this experimental method is a good choice to build the primary dynamic model of AMSS.
文摘Energy consumption reduction efforts in the residential buildings sector represent socio-economical, technological and environmental preoccupations which justify advanced scientific research. These lead to use inverse models to describe thermal behavior and to evaluate the energy consumption of buildings. Their principal goal is to provide supporting evidence of enhanced energy performances and predictions. More specifically, research questions are related to building thermal modeling which is the most appropriate in a smart grid context. In this context, the models are reviewed according to three categories. The first category is based on physical and basic principle modeling (white-box). The second offers a much simpler structure which is the statistical models (black-box). The black-box is used for prediction of energy consumption and heating/ cooling demands. Finally, the third category is a hybrid method (grey-box), which uses both physical and statistical modeling techniques. In this paper, we propose a detailed review and simulation of the main thermal building models. Our comparison and simulation results demonstrate that the grey-box is the most effective model for management of buildings energy consumption.
文摘Throughout the life cycle, the buildings emit a great deal of carbon dioxide into the atmosphere, which directly leads to aggravation in the greenhouse effect and becomes a severe threat to the environment and humans. Researchers have made numerous efforts to accurately calculate emissions to reduce the life cycle carbon emissions of residential buildings. Nevertheless, there are still difficulties in quickly estimating carbon emissions in the design stage without specific data. To fill this gap, the study, based on Life Cycle Assessment (LCA) and Building Information Modeling (BIM), proposed a quick method for estimating Building’s Life Cycle Carbon Emissions (BLCCE). Taking a hospital building in Chuzhou City, Anhui Province, China as an example, it tested its possibility to estimate BLCCE. The results manifested that: 1) the BLCCE of the project is 40,083.56 tCO2-eq, and the carbon emissions per square meter per year are 119.91 kgCO2-eq/(m2·y);2) the stage of construction, operational and demolition account for 7.90%, 91.31%, and 0.79% of BLCCE, respectively;3) the annual carbon emissions per square meter of hospital are apparently higher than that of villa, residence, and office building, due to larger service population, longer daily operation time, and stricter patient comfort requirements. Considering the lack of BLCCE research in Chinese hospitals, this case study will provide a valuable reference for the estimated BLCCE of hospital building.
基金Sponsored by the Experimental Teaching Reform and Laboratory Construction Project of University of Science and Technology Liaoning in 2015"Experimental Teaching Reform of Form Composition in Basis of Architectural Design"Project of the 13th Five-Year Plan for Education and Science of Liaoning Province in 2016(JG16DB222)
文摘To comply with the strategic goal of "mass entrepreneurship and innovation",universities and col eges adjusted the discipline cultivation objective to be cultivation of innovational and enterprising talents.Innovational and enterprising talents are inseparable from creative thinking,while the cultivation of creative thinking is the basis of cultivation of innovational and enterprising talents.This paper discussed cultivation of students' creative thinking through making building models in basic course of architectural design.Besides,it analyzed the relation between making of building models and creative thinking from divergent thinking,multi-directional thinking,element changing thinking,conversion thinking,and reverse thinking.It is expected to cultivate students' creative thinking through building models,to lay a solid foundation for architectural design courses,and to provide more architectural designers with more solid foundation and creative thinking.
基金Project supported by the National Natural Science Foundation of China(No.69833010)
文摘New development in urban planning, cityscape, real estate management and the like, calls for new demands for 3D city model. There are so many objects in 3D city model such as building, river, road, and so on. The building model is very important in 3D city model. In recent years,a lot of research work about visualization has been done. In our opinions,visualization is only a part of 313 city model, while interactive operation about buildings is rather important as well. In order to implement interactive operation (create , edit, query,etc. ), good data structure and model must be developed.
文摘Building Information Modelling (BIM) is a technology and a process that has brought changes in the construction’s traditional procurement system. Kenya lacks contractual guidelines on implementation of BIM;this makes the adoption of BIM slow and difficult. Previous research has identified a gap in contractual relationships, roles and resulting risks. The objectives of this study were to investigate BIM adoption in Nairobi and to investigate the influence of BIM on Engineering Contract Management (ECM)</span><span style="font-family:Verdana;"> in Nairobi Kenya</span><span style="font-family:Verdana;">. The survey research was a descriptive study with 175 responsive questionnaires. Respondents comprised of Civil Engineers, Construction Project Managers, Architects, Quantity Surveyors, Contractors and Facility Managers. Data was collected through self-administered questionnaire and in-depth interview. Descriptive analytics, correlation and Exploratory factor analysis methods were used to analyse quantitative data. Qualitative data was analysed thematically. It emerged that adoption level was at 56.6% and shallow understanding of BIM capabilities remains to be a barrier to its adoption and implementation. It also emerged that BIM improves ECM;when time, cost, quality, collaboration and return on investment improve, ECM becomes easier. Latent factors found in BIM and ECM relationship were Legal Implications, awareness and knowledge, efficiency, versatility, mandate and leadership, and competitiveness. Further, the study found out that BIM influence on ECM demands for establishment of standards, guidelines, policy, legal framework, and regulations, which can be achieved by amending the public procurement act which dictates the operation of all the other standard forms of contract. Further research should be conducted to measure whether the understanding of BIM had positively improved.
文摘Heat conduction through conventional and interlocking building bricks with cavities was studied in this work. Heat transfer analysis was carried out using MATLAB? partial differential equation toolbox. Regular and staggered hole arrangements were studied. Results showed that four staggered holed interlocking bricks were effective in thermal resistance into the bricks and increasing the holes beyond four did not give any thermal resistance advantage. For the conventional bricks staggered holes did not give any thermal resistance advantage but the four-holed bricks were also adjudged to be effective in thermal resistance into the brick surface. Increasing the number of holes beyond four in conventional bricks did give some thermal resistivity advantage but very minimal. Structural strengths of holed bricks were not considered in this study.
文摘AR (augmented reality) is a technology that adds information to the real world adding virtual elements to its visualization in real time. AR used in AECO (architectural, engineering, construction and operations) can contribute in augmenting visualization during design, construction and operation of the buildings. This article presents a study that applies AR to building assessment with BIM (building information) model visualization. The use of AR on existing applications for smart phones and tablets is validated. AR proposed an adaptation of the method of POE (post-occupancy evaluation) subsidized. Traditional POE process model involves three phases: planning, conducting and applying. In order to incorporate AR, it is proposed a total restructuring of the planning phase, developing the research instruments in three steps: 3D modeling, model treatment and AR application development. It was observed that for POE studies, the 3D models are in large scale and need to be detailed for precise comparison. BIM models for facility management, representing building use situation, are of the highest level of detail. A balanced point between simplicity and representativeness was the solution adopted in this experiment for uploading and downloading performance issues. This article presents and discusses findings for the new proposition for the activity of research instruments development for the planning phase of POE with AR as well as initial tests with first results and difficulties faced.
文摘Global concerns toward environmental issues have induced growing demand for new approaches in the construction because of its considerable impact on the environment and use of natural resources. Through using construction sustainability tools, methods and techniques, a greener design can be applied during various building phases. In this connection, it is argued that the analytical and integrated models applied by Building Information Modelling (BIM) may also facilitate this process to be performed more efficiently. BIM and construction sustainability are quite different initiatives, but both have received much attention in recent years in the architecture, engineering and construction (AEC) industry. A rigorous analysis of the interactions between them implies that a synergy exists which, if properly it is understood that can be helpful to reduce the environmental impacts of the AEC industry. A BIM-based design model can contribute to sustainability through its three main dimensions which are environmental, economic and social. In this paper, by reviewing the existing literature on BIM and construction sustainability and using a matrix to analyze construction sustainability dimensions and BIM functionalities a number of interactions have been discussed. It can be concluded that despite there are many improvements in implementation of BIM in environmental and economic aspects of sustainability, its potential impact on social dimension has not been explicitly explored hence further studies need to be undertaken in this area.