In a tokamak fusion reactor operated at steady state,the equilibrium magnetic field is likely to have reversed shear in the core region,as the noninductive bootstrap current profile generally peaks off-axis.The revers...In a tokamak fusion reactor operated at steady state,the equilibrium magnetic field is likely to have reversed shear in the core region,as the noninductive bootstrap current profile generally peaks off-axis.The reversed shear Alfvén eigenmode(RSAE)as a unique branch of the shear Alfvén wave in this equilibrium,can exist with a broad spectrum in wavenumber and frequency,and be resonantly driven unstable by energetic particles(EP).After briefly discussing the RSAE linear properties in burning plasma condition,we review several key topics of the nonlinear dynamics for the RSAE through both wave-EP resonance and wave-wave coupling channels,and illustrate their potentially important role in reactor-scale fusion plasmas.By means of simplified hybrid MHD-kinetic simulations,the RSAEs are shown to have typically broad phase space resonance structure with both circulating and trapped EP,as results of weak/vanishing magnetic shear and relatively low frequency.Through the route of wave-EP nonlinearity,the dominant saturation mechanism is mainly due to the transported resonant EP radially decoupling with the localized RSAE mode structure,and the resultant EP transport generally has a convective feature.The saturated RSAEs also undergo various nonlinear couplings with other collective oscillations.Two typical routes as parametric decay and modulational instability are studied using nonlinear gyrokinetic theory,and applied to the scenario of spontaneous excitation by a finite amplitude pump RSAE.Multiple RSAEs could naturally couple and induce the spectral energy cascade into a low frequency Alfvénic mode,which may effectively transfer the EP energy to fuel ions via collisionless Landau damping.Moreover,zero frequency zonal field structure could be spontaneously excited by modulation of the pump RSAE envelope,and may also lead to saturation of the pump RSAE by both scattering into stable domain and local distortion of the continuum structure.展开更多
Fire is a major type of disturbance that has important influences on ecosystem dynamics and carbon cycles.Yet our understanding of ecosystem fires and their carbon cycle consequences is still limited,largely due to th...Fire is a major type of disturbance that has important influences on ecosystem dynamics and carbon cycles.Yet our understanding of ecosystem fires and their carbon cycle consequences is still limited,largely due to the difficulty of large-scale fire monitoring and the complex interactions between fire,vegetation,climate,and anthropogenic factors.Here,using data from satellite-derived fire observations and ecosystem model simulations,we performed a comprehensive investigation of the spatial and temporal dynamics of China’s ecosystem fire disturbances and their carbon emissions over the past two decades(1997–2016).Satellite-derived results showed that on average about 3.47-4.53×10^(4) km^(2) of the land was burned annually during the past two decades,among which annual burned forest area was about 0.81-1.25×10^(4) km^(2),accounting for 0.33-0.51%of the forest area in China.Biomass burning emitted about 23.02 TgC per year.Compared to satellite products,simulations from the Energy Exascale Earth System Land Model(ELM)strongly overestimated China’s burned area and fire-induced carbon emissions.Annual burned area and fire-induced carbon emissions were high for boreal forest in Northeast China’s Daxing’anling region and subtropical dry forest in South Yunnan,as revealed by both the satellite product and the model simulations.Our results suggest that climate and anthropogenic factors play critical roles in controlling the spatial and seasonal distribution of China’s ecosystem fire disturbances.Our findings highlight the importance of multiple complementary approaches in assessing ecosystem fire disturbance and its carbon consequences.Further studies are required to improve the methods of observing and modelling China’s ecosystem fire disturbances,which will provide valuable information for fire management and ecosystem sustainability in an era when both human activities and the natural environment are rapidly changing.展开更多
Gradiently denitrated gun propellant(GDGP)prepared by a“gradient denitration”strategy is obviously superior in progressive burning performance to the traditional deterred gun propellant.Currently,the preparation of ...Gradiently denitrated gun propellant(GDGP)prepared by a“gradient denitration”strategy is obviously superior in progressive burning performance to the traditional deterred gun propellant.Currently,the preparation of GDGP employed a tedious two-step method involving organic solvents,which hinders the large-scale preparation of GDGP.In this paper,GDGP was successfully prepared via a novelty and environmentally friendly one-step method.The obtained samples were characterized by FT-IR,Raman,SEM and XPS.The results showed that the content of nitrate groups gradiently increased from the surface to the core in the surface layer of GDGP and the surface layer of GDGP exhibited a higher compaction than that of raw gun propellant,with a well-preserved nitrocellulose structure.The denitration process enabled the propellant surface with regressive energy density and good progressive burning performance,as confirmed by oxygen bomb and closed bomb test.At the same time,the effects of different solvents on the component loss of propellant were compared.The result showed that water caused the least component loss.Finally,the stability of GDGP was confirmed by methyl-violet test.This work not only provided environmentally friendly,simple and economic preparation of GDGP,but also confirmed the stability of GDGP prepared by this method.展开更多
The laminar combustion characteristics of CH_(4)/air premixed flames with CO_(2) addition are systemically studied.Experimental measurements and numerical simulations of the laminar burning velocity(LBV)are performed ...The laminar combustion characteristics of CH_(4)/air premixed flames with CO_(2) addition are systemically studied.Experimental measurements and numerical simulations of the laminar burning velocity(LBV)are performed in CH_(4)/CO_(2)/Air flames with various CO_(2) doping ratio under equivalence ratios of 1.0–1.4.GRI 3.0 mech and Aramco mech are employed for predicting LBV,adiabatic flame temperature(AFT),important intermediate radicals(CH_(3),H,OH,O)and NO_(x) emissions(NO,NO_(2),N2O),as well as the sensitivity analysis is also conducted.The detail analysis of experiment and simulation reveals that as the CO_(2) addition increases from 0%to 40%,the LBVs and AFTs decrease monotonously.Under the same CO_(2) doping ratio,the LBVs and AFTs increase first and then decrease with the increase of equivalence ratio,and the maximum of LBV is reached at equivalence ratio of 1.05.The mole fraction tendency of important intermediates and NO_(x) with equivalence ratio and CO_(2) doping ratio are similar to the LBVs and AFTs.Reaction H+O_(2)⇔O+OH is found to be responsible for the promotion of the generation of important intermediates and NO_(x) under the equivalence ratios and CO_(2) addition through sensitivity analysis.The sensitivity coefficients of elementary reactions that the increasing of CO_(2) doping ratio promotes or inhibits formation of intermediate radicals and NO_(x) decreases.展开更多
Nowadays,people still rely on traditional heating methods in rural areas of northern China,such as Kang(bed-stoves) and burning caves in cold winter.Field measurements of indoor environment were carried out in several...Nowadays,people still rely on traditional heating methods in rural areas of northern China,such as Kang(bed-stoves) and burning caves in cold winter.Field measurements of indoor environment were carried out in several rural houses with burning-cave-coil-Kang coupling heating system in northern China.The results show that this system is able to realize the graded use of internal energy of burning cave.The temperature of supply pipe water ranged from 30 ℃ to 50 ℃ which met the demands in 74.7% of time.The surface temperature of Kang maintained at above 25 ℃.Compared with traditional burning cave,using burning-cave-coil-Kang coupled with heating system has a higher thermal efficiency of 48.9%,which is 8.32% higher than the traditional one.展开更多
Prescribed burning and tree thinning are commonly used restoration practices for US forests management to increase forest productivity and enhance plant and animal diversity. The impact of these practices in Alabama’...Prescribed burning and tree thinning are commonly used restoration practices for US forests management to increase forest productivity and enhance plant and animal diversity. The impact of these practices in Alabama’s Bankhead National Forest (BNF) to soil microbial components and overall forest soil health are unknown. We hypothesized that microbial assemblages and enzyme activities are continuously changing in forest ecosystems especially due to management selections. Therefore, the objective of this study was to assess changes in microbial community compositions (fungal vs bacterial populations) via fatty acid methyl ester (FAME) profiling and several enzyme activities (β-glucosaminidase, acid phosphatase, arylsulfatase, β-glucosidase, xylanase, laccase, and manganese peroxidase) critical to soil organic matter (SOM) dynamics and biogeochemical cycling. In this forest, heavily-thinned plots without burning or less frequent burning treatments seemed to provide more favorable conditions (higher pH and lower C:N ratios) for C and N mineralization. This may explain a slight increase (by 12%) detected in fungi:bacteria (F:B) ratio in the heavily-thinned plots relative to the control. Thinned (lightly and heavily) plots showed greater ligninolytic (laccase and MnP) activities and lower β-glucosidase and β-glucosaminidase activities compared to the no-thinned plots probably due to increase depositions of woody recalcitrant C materials. We observed significant but negative correlations between the ligninolytic laccase and manganese peroxidase (Lac and MnP) enzymes respectively, with MBC (?0.45* and ?0.68** respectively) and MBN (?0.43* and ?0.65** respectively). Prescribed burning treatment reduced microbial biomass C and N of the 9-yr burned plot/lightly thinned plotsprobably due to depletion of labile C sources with the high temperatures, leaving mostly recalcitrant C sources as available soil substrates. Gram-positive bacteria (i15:0, a15:0, i17:0, and a17:0), actinomycetes (10-Me17:0, 10-Me18:0), AMF (16:1ω5c), and saprophytic fungi (18:1ω9c), largely contributed to the microbial compositions. This study bridges knowledge gaps in our understanding of microbial community compositions and enzyme-mediated processes in repeatedly burned and thinned forest ecosystems.展开更多
As an innovative propulsion technique, laser augmented chemical propulsion(LACP) seems superior to the traditional ones. However, the corresponding combustion theories have still to be ascertained for LACP. Burning ra...As an innovative propulsion technique, laser augmented chemical propulsion(LACP) seems superior to the traditional ones. However, the corresponding combustion theories have still to be ascertained for LACP. Burning rate of 5-aminotetrazole(5-ATZ) propellant has been studied by testing pressed samples under different combustor pressures and laser powers. Based on micro computed tomography(Micro CT),an advanced thickness-over-time(TOT) method to characterize the regression of the produced nonplanar burning surface is established. Because of a shell structure covering the combustion surface,the burning rate of the implemented 5-ATZ propellant is not constant during laser ablation. Resorting to functional fitting, a new law of non-constant burning including the effect of the observed unique burning surface structures is proposed. Accordingly, applicable combustion conditions of 5-ATZ based propellants have been preliminarily speculated for future research activities.展开更多
Background:More than a decade of fire suppression has changed the structure of fire-adapted shrubland ecosystems in Spain’s National Parks,which are now at extreme risk of uncontrolled wildfires.Prescribed burning ca...Background:More than a decade of fire suppression has changed the structure of fire-adapted shrubland ecosystems in Spain’s National Parks,which are now at extreme risk of uncontrolled wildfires.Prescribed burning can mitigate the risk of wildfires by reducing the fuel load but prescribed burning may also alter the soil properties and reduce microbial and fungal activity,causing changes in the availability of nutrients deep in the soil layer.Although fungal communities are a vital part of post-fire restoration,some fire effects remain unclear.To examine the short-term effects of prescribed burning on soil fungal communities in Doñana Biological Reserve(SW Spain),we collected soil samples pre-burn and 1 day,6 and 12 months post-burn from burned plots to perform physicochemical and metabarcode DNA analyses.Results:Prescribed burning had no significant effect on the total fungal operational taxonomic unit richness and abundance.However,changes in soil pH,nitrogen and potassium content post-burn affected fungal community composition.Small non-significant changes in pH and phosphorous affected the composition of ectomycorrhizal fungi.Conclusions:The ectomycorrhizal fungal community appears to be resilient to the effects of low-to moderate-intensity fires and saprotrophic taxa may benefit from this kind of fire.This finding revealed that prescribed burning is a potentially valuable management tool for reducing fire hazards in shrublands that has little effect on the total richness and abundance of fungal communities.展开更多
As an innovative propulsion technique, combustion mechanism of laser-augmented chemical propulsion has still to be ascertained. Benefiting from high nitrogen content and thermal stability, 5-aminotetrazole is a suitab...As an innovative propulsion technique, combustion mechanism of laser-augmented chemical propulsion has still to be ascertained. Benefiting from high nitrogen content and thermal stability, 5-aminotetrazole is a suitable ingredient for LACP. Under a flowing nitrogen environment, two kinds of unique burning surfaces were observed to occur for 5-ATZ, used as a single reacting propellant ingredient with the addition of carbon, under laser ablation. Both surfaces are hollow structures and differ by the possible presence of edges. Using micro computed tomography, the 3D perspective structures of both surfaces were revealed. Resorting to various characterization methods, a unified formation mechanism for both surfaces is proposed. This mechanism specifically applies to laser ablation, but could be crucial to common burning mechanisms in LACP.展开更多
Fire severity classifications determine fire damage and regeneration potential in post-fire areas for effective implementation of restoration applications.Since fire damage varies according to vegetation and fire char...Fire severity classifications determine fire damage and regeneration potential in post-fire areas for effective implementation of restoration applications.Since fire damage varies according to vegetation and fire characteristics,regional assessment of fire severity is crucial.The objectives of this study were:(1)to test the performance of different satellite imagery and spectral indices,and two field—measured severity indices,CBI(Composite Burn Index)and GeoCBI(Geometrically structured Composite Burn Index)to assess fire severity;(2)to calculate classification thresholds for spectral indices that performed best in the study areas;and(3)to generate fire severity maps that could be used to determine the ecological impact of forest fires.Five large fires in Pinus brutia(Turkish pine)and Pinus nigra subsp.pallasiana var.pallasiana(Anatolian black pine)—dominated forests during 2020 and 2021 were selected as study sites.The results show that GeoCBI provided more reliable estimates of field—measured fire severity than CBI.While Sentinel-2 and Landsat-8/OLI images performed similarly well,MODIS performed poorly.Fire severity classification thresholds were determined for Sentinel-2 based RdNBR,dNBR,dSAVI,dNDVI,and dNDMI and Landsat-8/OLI based dNBR,dNDVI,and dSAVI.Among several spectral indices,the highest accuracy for fire severity classification was found for Sentinel-2 based RdNBR(72.1%)and Landsat-8/OLI based dNBR(69.2%).The results can be used to assess and map fire severity in forest ecosystems similar to those in this study.展开更多
Prescribed burning can alter soil microbial activity and spatially redistribute soil nutrient elements.However,no systematic,in-depth studies have investigated the impact of prescribed burning on the spatial patterns ...Prescribed burning can alter soil microbial activity and spatially redistribute soil nutrient elements.However,no systematic,in-depth studies have investigated the impact of prescribed burning on the spatial patterns of soil microbial biomass in temperate forest ecosystems in Northeast China.The present study investigated the impacts of prescribed burning on the small-scale spatial heterogeneity of microbial biomass carbon(MBC)and microbial biomass nitrogen(MBN)in the upper(0–10 cm)and lower(10–20 cm)soil layers in Pinus koraiensis and Quercus mongolica forests and explored the factors that infl uence spatial variations of these variables after prescribed burning.Our results showed that,MBC declined by approximately 30%in the 10–20 cm soil layer in the Q.mongolica forest,where there were no signifi cant eff ects on the soil MBC and MBN contents of the P.koraiensis forest(p>0.05)after prescribed burning.Compared to the MBC of the Q.mongolica forest before the prescribed burn,MBC spatial dependence in the upper and lower soil layers was approximately 7%and 2%higher,respectively.After the prescribed burn,MBN spatial dependence in the upper and lower soil layers in the P.koraiensis forest was approximately 1%and 13%lower,respectively,than that before the burn,and the MBC spatial variability in the 0–10 cm soil layer in the two forest types was explained by the soil moisture content(SMC),whereas the MBN spatial variability in the 0–10 cm soil layer in the two forests was explained by the soil pH and nitrate nitrogen(NO_(3)^(–)-N),respectively.In the lower soil layer(10–20 cm)of the Q.mongolica forest,elevation and ammonium nitrogen(NH 4+-N)were the main factors aff ecting the spatial variability of MBC and MBN,respectively.In the 10–20 cm soil layer of the P.koraiensis forest,NO_(3)^(–)-N and slope were the main factors aff ecting the spatial variability of MBC and MBN,respectively,after the burn.The spatial distributions of MBC and MBN in the two forests were largely structured with higher spatial autocorrelation(relative structural variance C/[C 0+C]>0.75).However,the factors infl uencing the spatial variability of MBC and MBN in the two forest types were not consistent between the upper and lower soil layers with prescribed burning.These fi ndings have important implications for developing sustainable management and conservation policies for forest ecosystems.展开更多
The economic damage to soybean [Glycine max (L.) Merr.] production in the United States attributed to nematodes has increased in recent years. Understanding how soil properties affect nematodes will help to properly m...The economic damage to soybean [Glycine max (L.) Merr.] production in the United States attributed to nematodes has increased in recent years. Understanding how soil properties affect nematodes will help to properly manage agroecosystems to minimize potential nematode damage to soybean crop and the associated economic impact. The objective of this study was to evaluate the relationships between near-surface soil properties and soybean yield and nematode densities across two years (2017 and 2018) in a long-term, wheat (Triticum aestivum L.)-soybean, double-crop production system on a silt-loam soil (Fragiudalfs) in eastern Arkansas. Soybean cyst nematode (SCN;Heterodera glycines Ichinohe) eggs and stage-2 juveniles (J2), lance (Hoplolaimus spp.), lesion (Pratylenchus spp.), spiral (Helicotylenchus spp.), stunt (Tylenchorhynchus spp.), total nematode numbers, and the total genera counts from early in the growing season (July), mid-season (August), and end of the season (October) were generally unrelated with soybean yield. Soybean cyst eggs population density in August was negatively correlated with soil pH (r = -0.92;P ≤ 0.05). Total nematode numbers in July was negatively correlated with silt content (r = -0.23;P ≤ 0.05), soil pH (r = -0.27;P r = -0.24;P ≤ 0.05). Results suggested that soil properties influenced nematode population densities, indicating that nematodes can be at least partially managed and minimized through greater understanding of the variation of select near-surface soil properties in a wheat-soybean, double-crop production system on a silt-loam soil.展开更多
Objective:To explore the effect of mindfulness meditation on patients with burning mouth syndrome.Methods:60 patients with burning mouth syndrome in our hospital who were treated from January 2021 to December 2022 wer...Objective:To explore the effect of mindfulness meditation on patients with burning mouth syndrome.Methods:60 patients with burning mouth syndrome in our hospital who were treated from January 2021 to December 2022 were selected for this study.The patients were divided into two groups of thirty cases each using the randomized numerical table method.The observation underwent psychological intervention and mindfulness meditation training,while the control group only received symptomatic care.The condition of the patients of both groups was observed and compared.Results:Upon receiving treatment,the patients in the observation group had lower Hamilton Anxiety(HAM-A)scores,and Hamilton Depression(HAMD)scores compared to the control group(P<0.05).The visual analog scale(VAS)scores of the observation group were also lower than those of the control group(P<0.05).Moreover,the efficacy of the nursing intervention in the observation group was higher than that of the control group(P<0.05).Conclusion:Psychological intervention and mindfulness meditation training can effectively improve the clinical symptoms of patients with burning mouth syndrome.Therefore,this treatment method should be popularized.展开更多
Based on field survey and measurement, and the simulated field burning test by indoor burning bed, a multiple linear regression model was established with factors of fuel load(x1), temperature(x2), fuel moisture c...Based on field survey and measurement, and the simulated field burning test by indoor burning bed, a multiple linear regression model was established with factors of fuel load(x1), temperature(x2), fuel moisture content(x3), wind velocity(x4), aspect(xs), slope(x6), forest height(x7), propagation velocity(x8), fire line intensity(xg) and prescribed burning width of fire isolated belt(y). The results showed that the multivari- ate linear model was y=-12.371 +4.182x1 +0.435x2 +0.013x3+0.083x4+0.017x5+0.916x6+ 0.540x7, and the influences of the factors on the prescribed burning width of fire isolated belt were in the order of x6, x7, x1, x4, x3, x2, x5. This model make it easier to establish fire isolated belt by using fuel characteristics, topographic factors, meteorological factors, and forest stand factors, providing basis for the development of prescribed burning and forest management fire.展开更多
A large fire of 233 ha in Huascarán National Park in Peru provided an opportunity to compare plant and bird responses in burned and nearby unburned zones of the puna. Heights and live diameters of flagship Puya r...A large fire of 233 ha in Huascarán National Park in Peru provided an opportunity to compare plant and bird responses in burned and nearby unburned zones of the puna. Heights and live diameters of flagship Puya raimondii rosettes(assigned to four broad developmental phases), plant communities(66 species in 24 families and nine growth forms) and bird communities(77 species in six trophic guilds) were monitored after the fire. Although no mortality was observed, Puya raimondii plants were affected by the fire, losing approximately 60% of their photosynthetic area across all developmental phases, but recovered quickly during the first two years after fire. The comparison of Puya rosette recovery after fire was complicated by the changes in live rosette diameter for unburned plants, which showed plasticity of photosynthetic area linked to seasonal and annual fluctuations in precipitation in this relatively dry environment(decreased by 26% for mature adult plants over the study period). Fire caused an immediate change in the density, biomass and composition of vegetation. Although the species present remained similar, their abundances changed significantly immediately after the fire, with notable reductions in dominant tussock grasses. This provided opportunities for other plants, resulting in higher postfire diversity of plant species, genera, families and growth forms. In turn, the changes in vegetation after fire affected the composition of birds according to their trophic guild. Granivores largely disappeared,generalists were mostly unaffected, and other guilds showed a more complex response. As the vegetation recovered, most displaced birds returned within approximately one year.展开更多
The burning of crop residues in fields is a significant global biomass burning activity which is a key element of the terrestrial carbon cycle,and an important source of atmospheric trace gasses and aerosols.Accurate ...The burning of crop residues in fields is a significant global biomass burning activity which is a key element of the terrestrial carbon cycle,and an important source of atmospheric trace gasses and aerosols.Accurate estimation of cropland burned area is both crucial and challenging,especially for the small and fragmented burned scars in China.Here we developed an automated burned area mapping algorithm that was implemented using Sentinel-2 Multi Spectral Instrument(MSI)data and its effectiveness was tested taking Songnen Plain,Northeast China as a case using satellite image of 2020.We employed a logistic regression method for integrating multiple spectral data into a synthetic indicator,and compared the results with manually interpreted burned area reference maps and the Moderate-Resolution Imaging Spectroradiometer(MODIS)MCD64A1 burned area product.The overall accuracy of the single variable logistic regression was 77.38%to 86.90%and 73.47%to 97.14%for the 52TCQ and 51TYM cases,respectively.In comparison,the accuracy of the burned area map was improved to 87.14%and 98.33%for the 52TCQ and 51TYM cases,respectively by multiple variable logistic regression of Sentind-2 images.The balance of omission error and commission error was also improved.The integration of multiple spectral data combined with a logistic regression method proves to be effective for burned area detection,offering a highly automated process with an automatic threshold determination mechanism.This method exhibits excellent extensibility and flexibility taking the image tile as the operating unit.It is suitable for burned area detection at a regional scale and can also be implemented with other satellite data.展开更多
The analysis of hydrochemical characteristics and influencing factors of surface river on plateau is helpful to study water hydrological cycle and environmental evolution,which can scientifically guide rational develo...The analysis of hydrochemical characteristics and influencing factors of surface river on plateau is helpful to study water hydrological cycle and environmental evolution,which can scientifically guide rational development and utilization of water resources and planning of ecological environment protection.With the expansion and diversification of human activities,the quality of surface rivers will be more directly affected.Therefore,it is of great significance to pay attention to the hydrochemical characteristics of plateau surface rivers and the influence of human activities on their circulation and evolution.In this study,surface water in the Duoqu basin of Jinsha River located in Hengduan mountain region of Eastern Tibet was selected as the representative case.Twenty-three groups of surface water samples were collected to analyze the hydrochemical characteristics and ion sources based on correlation analysis,piper trigram,gibbs model,hydrogen and oxygen isotopic techniques.The results suggest the following:(1)The pH showed slight alkalinity with the value ranged from 7.25 to 8.62.Ca^(2+),Mg^(2+)and HCO_(3)^(–)were the main cations and anions.HCO_(3)^(-)Ca and HCO_(3)^(-)Ca·Mg were the primary hydrochemical types for the surface water of Duoqu River.The correlation analysis showed that TDS had the most significant correlation with Ca^(2+),Mg^(2+)and HCO_(3)^(–).Analysis on hydrogen and oxygen isotopes indicated that the surface rivers were mainly recharged by atmospheric precipitation and glacial melt water in this study area.(2)The surface water had a certain reverse cation alternating adsorption,and surface water ions were mainly derived from rock weathering,mainly controlled by weathering and dissolution of carbonates,and secondly by silicates and sodium rocks.(3)The influence of human activities was weak,while the development of cinnabar minerals had a certain impact on the hydrochemistry characteristics,which was the main factor for causing the increase of SO_(4)^(2–).The densely populated county towns and temples with frequent incense burning activities may cause some anomalies of surface water quality.At present,the Duoqu River watershed had gone through a certain influence of mineral exploitation,so the hydrological cycle and river eco-environment at watershed scale will still bound to be change.The results could provide basic support for better understanding water balance evolution as well as the ecological protection of Duoqu River watershed.展开更多
In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power a...In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power at high injection currents.In this paper,a simplified numerical analysis model is proposed for 1.06μm long-cavity diode lasers by combining TPA and FCA losses with one-dimensional(1D)rate equations.The ef⁃fects of LSHB,TPA and FCA on the output characteristics are systematically analyzed,and it is proposed that ad⁃justing the front facet reflectivity and the position of the quantum well(QW)in the waveguide layer can improve the front facet output power.展开更多
To explore the composite process of B-CuO and B-Bi_(2)O_(3) two-component laminated sticks,obtain the corresponding sticks with good printing effect,and explore the energy release behavior.In this study,boron,copper o...To explore the composite process of B-CuO and B-Bi_(2)O_(3) two-component laminated sticks,obtain the corresponding sticks with good printing effect,and explore the energy release behavior.In this study,boron,copper oxide,and bismuth trioxide powders were dispersed in the dispersed phase (DMF) using F_(2602) as a binder,and the construction of two-component B-CuO,B-Bi_(2)O_(3),three-component microcomposite,and three-component macro-composite sticks were realized with the help of double nozzle direct ink writing (DIW) technique respectively.The resulting sticks were ignited by a nichrome wire energized with a direct current,and a high-speed camera system was used to record the combustion behavior of the sticks,mark the flame position,and calculate the rate of ignition.The results showed that the B-CuO stick burning rate (42.11 mm·s^(-1)) was much higher than that of B-Bi_(2)O_(3)(17.84 mm·s^(-1)).The formulation with the highest CuO content (ω_(CuO)=58.7%) in the microscale composite of the sticks also had the fastest burning rate of 60.59 mm·s^(-1),as the CuO content decreased (ω_(CuO)=43.5%,29.3%),its burning rate decreased to 34.78 mm·s^(-1),37.97 mm·s^(-1).The stick with the highest copper oxide content(ω_(CuO)=60%) also possessed the highest burning rate (48.84 mm·s^(-1)) in the macro-composite sticks,and the burning rates of the macro-composite sticks with component spacing of 0.1 mm,0.2 mm,and 0.5 mm were 43.34 mm·s^(-1),48.84 mm·s^(-1),and 40.76 mm·s^(-1).展开更多
基金supported by National Natural Science Foundation of China (Nos. 12205251, 12275236 and 12261131622)Italian Ministry for Foreign Affairs and International Cooperation Project (No. CN23GR02)+2 种基金the National Key Research and Development Program of China (Nos. 2019YFE03020003 and 2017YFE0301900)Users of Excellence program of Hefei Science Center CAS (No. 2021HSC-UE016)funded by the European Union via the Euratom Research and Training Programme (No. 101052200–EUROfusion)
文摘In a tokamak fusion reactor operated at steady state,the equilibrium magnetic field is likely to have reversed shear in the core region,as the noninductive bootstrap current profile generally peaks off-axis.The reversed shear Alfvén eigenmode(RSAE)as a unique branch of the shear Alfvén wave in this equilibrium,can exist with a broad spectrum in wavenumber and frequency,and be resonantly driven unstable by energetic particles(EP).After briefly discussing the RSAE linear properties in burning plasma condition,we review several key topics of the nonlinear dynamics for the RSAE through both wave-EP resonance and wave-wave coupling channels,and illustrate their potentially important role in reactor-scale fusion plasmas.By means of simplified hybrid MHD-kinetic simulations,the RSAEs are shown to have typically broad phase space resonance structure with both circulating and trapped EP,as results of weak/vanishing magnetic shear and relatively low frequency.Through the route of wave-EP nonlinearity,the dominant saturation mechanism is mainly due to the transported resonant EP radially decoupling with the localized RSAE mode structure,and the resultant EP transport generally has a convective feature.The saturated RSAEs also undergo various nonlinear couplings with other collective oscillations.Two typical routes as parametric decay and modulational instability are studied using nonlinear gyrokinetic theory,and applied to the scenario of spontaneous excitation by a finite amplitude pump RSAE.Multiple RSAEs could naturally couple and induce the spectral energy cascade into a low frequency Alfvénic mode,which may effectively transfer the EP energy to fuel ions via collisionless Landau damping.Moreover,zero frequency zonal field structure could be spontaneously excited by modulation of the pump RSAE envelope,and may also lead to saturation of the pump RSAE by both scattering into stable domain and local distortion of the continuum structure.
基金funding was provided by the Carbon Mitigation Initiative(CMI)of the Princeton Environmental Institute,and by an Oak Ridge National Lab research subcontract to A.C.C.Y.and P.C.were supported by the fire_cci project(http://www.esa-fire-cci.org/)funded by the European Space AgencyS.R.was supported by a Graduate Research Fellowship from the U.S.National Science Foundation+1 种基金R.T.,J.M.,X.S.and D.R.were supported by the Terrestrial Ecosystem Science Scientific Focus Area(TES SFA)project and the Reducing Uncertainties in Biogeochemical Interactions through Synthesis and Computing Scientific Focus Area(RUBISCO SFA)project funded by the US Department of Energy,Office of Science,Office of Biological and Environmental ResearchOak Ridge National Laboratory is supported by the Office of Science of the US Department of Energy under Contract No.DE-AC05-00OR22725.
文摘Fire is a major type of disturbance that has important influences on ecosystem dynamics and carbon cycles.Yet our understanding of ecosystem fires and their carbon cycle consequences is still limited,largely due to the difficulty of large-scale fire monitoring and the complex interactions between fire,vegetation,climate,and anthropogenic factors.Here,using data from satellite-derived fire observations and ecosystem model simulations,we performed a comprehensive investigation of the spatial and temporal dynamics of China’s ecosystem fire disturbances and their carbon emissions over the past two decades(1997–2016).Satellite-derived results showed that on average about 3.47-4.53×10^(4) km^(2) of the land was burned annually during the past two decades,among which annual burned forest area was about 0.81-1.25×10^(4) km^(2),accounting for 0.33-0.51%of the forest area in China.Biomass burning emitted about 23.02 TgC per year.Compared to satellite products,simulations from the Energy Exascale Earth System Land Model(ELM)strongly overestimated China’s burned area and fire-induced carbon emissions.Annual burned area and fire-induced carbon emissions were high for boreal forest in Northeast China’s Daxing’anling region and subtropical dry forest in South Yunnan,as revealed by both the satellite product and the model simulations.Our results suggest that climate and anthropogenic factors play critical roles in controlling the spatial and seasonal distribution of China’s ecosystem fire disturbances.Our findings highlight the importance of multiple complementary approaches in assessing ecosystem fire disturbance and its carbon consequences.Further studies are required to improve the methods of observing and modelling China’s ecosystem fire disturbances,which will provide valuable information for fire management and ecosystem sustainability in an era when both human activities and the natural environment are rapidly changing.
文摘Gradiently denitrated gun propellant(GDGP)prepared by a“gradient denitration”strategy is obviously superior in progressive burning performance to the traditional deterred gun propellant.Currently,the preparation of GDGP employed a tedious two-step method involving organic solvents,which hinders the large-scale preparation of GDGP.In this paper,GDGP was successfully prepared via a novelty and environmentally friendly one-step method.The obtained samples were characterized by FT-IR,Raman,SEM and XPS.The results showed that the content of nitrate groups gradiently increased from the surface to the core in the surface layer of GDGP and the surface layer of GDGP exhibited a higher compaction than that of raw gun propellant,with a well-preserved nitrocellulose structure.The denitration process enabled the propellant surface with regressive energy density and good progressive burning performance,as confirmed by oxygen bomb and closed bomb test.At the same time,the effects of different solvents on the component loss of propellant were compared.The result showed that water caused the least component loss.Finally,the stability of GDGP was confirmed by methyl-violet test.This work not only provided environmentally friendly,simple and economic preparation of GDGP,but also confirmed the stability of GDGP prepared by this method.
基金The authors would like to thank the National Natural Science Foundation of China(52176095)Anhui Provincial Natural Science Foundation(2008085J25)the Project of support program for outstanding young people in Colleges and Universities(gxyqZD201830)for their financial support of this study.
文摘The laminar combustion characteristics of CH_(4)/air premixed flames with CO_(2) addition are systemically studied.Experimental measurements and numerical simulations of the laminar burning velocity(LBV)are performed in CH_(4)/CO_(2)/Air flames with various CO_(2) doping ratio under equivalence ratios of 1.0–1.4.GRI 3.0 mech and Aramco mech are employed for predicting LBV,adiabatic flame temperature(AFT),important intermediate radicals(CH_(3),H,OH,O)and NO_(x) emissions(NO,NO_(2),N2O),as well as the sensitivity analysis is also conducted.The detail analysis of experiment and simulation reveals that as the CO_(2) addition increases from 0%to 40%,the LBVs and AFTs decrease monotonously.Under the same CO_(2) doping ratio,the LBVs and AFTs increase first and then decrease with the increase of equivalence ratio,and the maximum of LBV is reached at equivalence ratio of 1.05.The mole fraction tendency of important intermediates and NO_(x) with equivalence ratio and CO_(2) doping ratio are similar to the LBVs and AFTs.Reaction H+O_(2)⇔O+OH is found to be responsible for the promotion of the generation of important intermediates and NO_(x) under the equivalence ratios and CO_(2) addition through sensitivity analysis.The sensitivity coefficients of elementary reactions that the increasing of CO_(2) doping ratio promotes or inhibits formation of intermediate radicals and NO_(x) decreases.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51178075)the Fundamental Research Funds for the Central Universities(Grant No.DUT17RW118)
文摘Nowadays,people still rely on traditional heating methods in rural areas of northern China,such as Kang(bed-stoves) and burning caves in cold winter.Field measurements of indoor environment were carried out in several rural houses with burning-cave-coil-Kang coupling heating system in northern China.The results show that this system is able to realize the graded use of internal energy of burning cave.The temperature of supply pipe water ranged from 30 ℃ to 50 ℃ which met the demands in 74.7% of time.The surface temperature of Kang maintained at above 25 ℃.Compared with traditional burning cave,using burning-cave-coil-Kang coupled with heating system has a higher thermal efficiency of 48.9%,which is 8.32% higher than the traditional one.
文摘Prescribed burning and tree thinning are commonly used restoration practices for US forests management to increase forest productivity and enhance plant and animal diversity. The impact of these practices in Alabama’s Bankhead National Forest (BNF) to soil microbial components and overall forest soil health are unknown. We hypothesized that microbial assemblages and enzyme activities are continuously changing in forest ecosystems especially due to management selections. Therefore, the objective of this study was to assess changes in microbial community compositions (fungal vs bacterial populations) via fatty acid methyl ester (FAME) profiling and several enzyme activities (β-glucosaminidase, acid phosphatase, arylsulfatase, β-glucosidase, xylanase, laccase, and manganese peroxidase) critical to soil organic matter (SOM) dynamics and biogeochemical cycling. In this forest, heavily-thinned plots without burning or less frequent burning treatments seemed to provide more favorable conditions (higher pH and lower C:N ratios) for C and N mineralization. This may explain a slight increase (by 12%) detected in fungi:bacteria (F:B) ratio in the heavily-thinned plots relative to the control. Thinned (lightly and heavily) plots showed greater ligninolytic (laccase and MnP) activities and lower β-glucosidase and β-glucosaminidase activities compared to the no-thinned plots probably due to increase depositions of woody recalcitrant C materials. We observed significant but negative correlations between the ligninolytic laccase and manganese peroxidase (Lac and MnP) enzymes respectively, with MBC (?0.45* and ?0.68** respectively) and MBN (?0.43* and ?0.65** respectively). Prescribed burning treatment reduced microbial biomass C and N of the 9-yr burned plot/lightly thinned plotsprobably due to depletion of labile C sources with the high temperatures, leaving mostly recalcitrant C sources as available soil substrates. Gram-positive bacteria (i15:0, a15:0, i17:0, and a17:0), actinomycetes (10-Me17:0, 10-Me18:0), AMF (16:1ω5c), and saprophytic fungi (18:1ω9c), largely contributed to the microbial compositions. This study bridges knowledge gaps in our understanding of microbial community compositions and enzyme-mediated processes in repeatedly burned and thinned forest ecosystems.
基金supported by the Shanghai Aerospace Science & Technology Innovation Fund (grant No. SAST201363)the Fundamental Research Funds for the Central Universities (grant No. 30919012102 in part)。
文摘As an innovative propulsion technique, laser augmented chemical propulsion(LACP) seems superior to the traditional ones. However, the corresponding combustion theories have still to be ascertained for LACP. Burning rate of 5-aminotetrazole(5-ATZ) propellant has been studied by testing pressed samples under different combustor pressures and laser powers. Based on micro computed tomography(Micro CT),an advanced thickness-over-time(TOT) method to characterize the regression of the produced nonplanar burning surface is established. Because of a shell structure covering the combustion surface,the burning rate of the implemented 5-ATZ propellant is not constant during laser ablation. Resorting to functional fitting, a new law of non-constant burning including the effect of the observed unique burning surface structures is proposed. Accordingly, applicable combustion conditions of 5-ATZ based propellants have been preliminarily speculated for future research activities.
基金Spanish R&D projects MYCOINFOR(Mycosilviculture Applied to Forest Fire Prevention in Mediterranean SystemsPID2019-105188RB-I00)+4 种基金VIS4FIRE(Comprehensive vulnerability of forest systems to fire:implications for forest management toolsRTA2017-00042-C05-01)Interreg-POCTEP CILIFO(Iberian Centre for Research and Forest Firefighting0753-CILIFO-5-E)financed by European Social Fund“NextGenerationEU”through a grant“Margarita Salas”awarded to Juncal Espinosa into the project GFIRE。
文摘Background:More than a decade of fire suppression has changed the structure of fire-adapted shrubland ecosystems in Spain’s National Parks,which are now at extreme risk of uncontrolled wildfires.Prescribed burning can mitigate the risk of wildfires by reducing the fuel load but prescribed burning may also alter the soil properties and reduce microbial and fungal activity,causing changes in the availability of nutrients deep in the soil layer.Although fungal communities are a vital part of post-fire restoration,some fire effects remain unclear.To examine the short-term effects of prescribed burning on soil fungal communities in Doñana Biological Reserve(SW Spain),we collected soil samples pre-burn and 1 day,6 and 12 months post-burn from burned plots to perform physicochemical and metabarcode DNA analyses.Results:Prescribed burning had no significant effect on the total fungal operational taxonomic unit richness and abundance.However,changes in soil pH,nitrogen and potassium content post-burn affected fungal community composition.Small non-significant changes in pH and phosphorous affected the composition of ectomycorrhizal fungi.Conclusions:The ectomycorrhizal fungal community appears to be resilient to the effects of low-to moderate-intensity fires and saprotrophic taxa may benefit from this kind of fire.This finding revealed that prescribed burning is a potentially valuable management tool for reducing fire hazards in shrublands that has little effect on the total richness and abundance of fungal communities.
基金supported by the Shanghai Aerospace Science & Technology Innovation Fund (Grant No. SAST201363)the Fundamental Research Funds for the Central Universities (Grant No. 30919012102 in part)。
文摘As an innovative propulsion technique, combustion mechanism of laser-augmented chemical propulsion has still to be ascertained. Benefiting from high nitrogen content and thermal stability, 5-aminotetrazole is a suitable ingredient for LACP. Under a flowing nitrogen environment, two kinds of unique burning surfaces were observed to occur for 5-ATZ, used as a single reacting propellant ingredient with the addition of carbon, under laser ablation. Both surfaces are hollow structures and differ by the possible presence of edges. Using micro computed tomography, the 3D perspective structures of both surfaces were revealed. Resorting to various characterization methods, a unified formation mechanism for both surfaces is proposed. This mechanism specifically applies to laser ablation, but could be crucial to common burning mechanisms in LACP.
基金funded by the Turkish General Directorate of Forestry(project number:19.9402/2020-2023)。
文摘Fire severity classifications determine fire damage and regeneration potential in post-fire areas for effective implementation of restoration applications.Since fire damage varies according to vegetation and fire characteristics,regional assessment of fire severity is crucial.The objectives of this study were:(1)to test the performance of different satellite imagery and spectral indices,and two field—measured severity indices,CBI(Composite Burn Index)and GeoCBI(Geometrically structured Composite Burn Index)to assess fire severity;(2)to calculate classification thresholds for spectral indices that performed best in the study areas;and(3)to generate fire severity maps that could be used to determine the ecological impact of forest fires.Five large fires in Pinus brutia(Turkish pine)and Pinus nigra subsp.pallasiana var.pallasiana(Anatolian black pine)—dominated forests during 2020 and 2021 were selected as study sites.The results show that GeoCBI provided more reliable estimates of field—measured fire severity than CBI.While Sentinel-2 and Landsat-8/OLI images performed similarly well,MODIS performed poorly.Fire severity classification thresholds were determined for Sentinel-2 based RdNBR,dNBR,dSAVI,dNDVI,and dNDMI and Landsat-8/OLI based dNBR,dNDVI,and dSAVI.Among several spectral indices,the highest accuracy for fire severity classification was found for Sentinel-2 based RdNBR(72.1%)and Landsat-8/OLI based dNBR(69.2%).The results can be used to assess and map fire severity in forest ecosystems similar to those in this study.
基金supported by the National Natural Science Foundation of China(Grant No.32001324,32071777)Youth Lift Project of China Association for Science and Technology(Grant No.YESS20210370)Heilongjiang Province Outstanding Youth Joint Guidance Project(No.LH2021C012).
文摘Prescribed burning can alter soil microbial activity and spatially redistribute soil nutrient elements.However,no systematic,in-depth studies have investigated the impact of prescribed burning on the spatial patterns of soil microbial biomass in temperate forest ecosystems in Northeast China.The present study investigated the impacts of prescribed burning on the small-scale spatial heterogeneity of microbial biomass carbon(MBC)and microbial biomass nitrogen(MBN)in the upper(0–10 cm)and lower(10–20 cm)soil layers in Pinus koraiensis and Quercus mongolica forests and explored the factors that infl uence spatial variations of these variables after prescribed burning.Our results showed that,MBC declined by approximately 30%in the 10–20 cm soil layer in the Q.mongolica forest,where there were no signifi cant eff ects on the soil MBC and MBN contents of the P.koraiensis forest(p>0.05)after prescribed burning.Compared to the MBC of the Q.mongolica forest before the prescribed burn,MBC spatial dependence in the upper and lower soil layers was approximately 7%and 2%higher,respectively.After the prescribed burn,MBN spatial dependence in the upper and lower soil layers in the P.koraiensis forest was approximately 1%and 13%lower,respectively,than that before the burn,and the MBC spatial variability in the 0–10 cm soil layer in the two forest types was explained by the soil moisture content(SMC),whereas the MBN spatial variability in the 0–10 cm soil layer in the two forests was explained by the soil pH and nitrate nitrogen(NO_(3)^(–)-N),respectively.In the lower soil layer(10–20 cm)of the Q.mongolica forest,elevation and ammonium nitrogen(NH 4+-N)were the main factors aff ecting the spatial variability of MBC and MBN,respectively.In the 10–20 cm soil layer of the P.koraiensis forest,NO_(3)^(–)-N and slope were the main factors aff ecting the spatial variability of MBC and MBN,respectively,after the burn.The spatial distributions of MBC and MBN in the two forests were largely structured with higher spatial autocorrelation(relative structural variance C/[C 0+C]>0.75).However,the factors infl uencing the spatial variability of MBC and MBN in the two forest types were not consistent between the upper and lower soil layers with prescribed burning.These fi ndings have important implications for developing sustainable management and conservation policies for forest ecosystems.
文摘The economic damage to soybean [Glycine max (L.) Merr.] production in the United States attributed to nematodes has increased in recent years. Understanding how soil properties affect nematodes will help to properly manage agroecosystems to minimize potential nematode damage to soybean crop and the associated economic impact. The objective of this study was to evaluate the relationships between near-surface soil properties and soybean yield and nematode densities across two years (2017 and 2018) in a long-term, wheat (Triticum aestivum L.)-soybean, double-crop production system on a silt-loam soil (Fragiudalfs) in eastern Arkansas. Soybean cyst nematode (SCN;Heterodera glycines Ichinohe) eggs and stage-2 juveniles (J2), lance (Hoplolaimus spp.), lesion (Pratylenchus spp.), spiral (Helicotylenchus spp.), stunt (Tylenchorhynchus spp.), total nematode numbers, and the total genera counts from early in the growing season (July), mid-season (August), and end of the season (October) were generally unrelated with soybean yield. Soybean cyst eggs population density in August was negatively correlated with soil pH (r = -0.92;P ≤ 0.05). Total nematode numbers in July was negatively correlated with silt content (r = -0.23;P ≤ 0.05), soil pH (r = -0.27;P r = -0.24;P ≤ 0.05). Results suggested that soil properties influenced nematode population densities, indicating that nematodes can be at least partially managed and minimized through greater understanding of the variation of select near-surface soil properties in a wheat-soybean, double-crop production system on a silt-loam soil.
文摘Objective:To explore the effect of mindfulness meditation on patients with burning mouth syndrome.Methods:60 patients with burning mouth syndrome in our hospital who were treated from January 2021 to December 2022 were selected for this study.The patients were divided into two groups of thirty cases each using the randomized numerical table method.The observation underwent psychological intervention and mindfulness meditation training,while the control group only received symptomatic care.The condition of the patients of both groups was observed and compared.Results:Upon receiving treatment,the patients in the observation group had lower Hamilton Anxiety(HAM-A)scores,and Hamilton Depression(HAMD)scores compared to the control group(P<0.05).The visual analog scale(VAS)scores of the observation group were also lower than those of the control group(P<0.05).Moreover,the efficacy of the nursing intervention in the observation group was higher than that of the control group(P<0.05).Conclusion:Psychological intervention and mindfulness meditation training can effectively improve the clinical symptoms of patients with burning mouth syndrome.Therefore,this treatment method should be popularized.
基金Supported by the Scientific Research Fund of the Education Bureau of Yunnan Province,China (2011C113)the Science and Technology Innovation Program for Undergraduates,Southwest Forestry University,China (1031)the "Forest Protection"Key Discipline of Yunnan Province,China (XKZ200905)~~
文摘Based on field survey and measurement, and the simulated field burning test by indoor burning bed, a multiple linear regression model was established with factors of fuel load(x1), temperature(x2), fuel moisture content(x3), wind velocity(x4), aspect(xs), slope(x6), forest height(x7), propagation velocity(x8), fire line intensity(xg) and prescribed burning width of fire isolated belt(y). The results showed that the multivari- ate linear model was y=-12.371 +4.182x1 +0.435x2 +0.013x3+0.083x4+0.017x5+0.916x6+ 0.540x7, and the influences of the factors on the prescribed burning width of fire isolated belt were in the order of x6, x7, x1, x4, x3, x2, x5. This model make it easier to establish fire isolated belt by using fuel characteristics, topographic factors, meteorological factors, and forest stand factors, providing basis for the development of prescribed burning and forest management fire.
基金supported by the Universidad Nacional Mayor de San Marcos: Resolución Rectoral (RR) N° 00883-R-06, project code 061001191RR N° 00914-R-07, project code 071001281and RR N°03556-R-19, project code D19120061。
文摘A large fire of 233 ha in Huascarán National Park in Peru provided an opportunity to compare plant and bird responses in burned and nearby unburned zones of the puna. Heights and live diameters of flagship Puya raimondii rosettes(assigned to four broad developmental phases), plant communities(66 species in 24 families and nine growth forms) and bird communities(77 species in six trophic guilds) were monitored after the fire. Although no mortality was observed, Puya raimondii plants were affected by the fire, losing approximately 60% of their photosynthetic area across all developmental phases, but recovered quickly during the first two years after fire. The comparison of Puya rosette recovery after fire was complicated by the changes in live rosette diameter for unburned plants, which showed plasticity of photosynthetic area linked to seasonal and annual fluctuations in precipitation in this relatively dry environment(decreased by 26% for mature adult plants over the study period). Fire caused an immediate change in the density, biomass and composition of vegetation. Although the species present remained similar, their abundances changed significantly immediately after the fire, with notable reductions in dominant tussock grasses. This provided opportunities for other plants, resulting in higher postfire diversity of plant species, genera, families and growth forms. In turn, the changes in vegetation after fire affected the composition of birds according to their trophic guild. Granivores largely disappeared,generalists were mostly unaffected, and other guilds showed a more complex response. As the vegetation recovered, most displaced birds returned within approximately one year.
基金Under the auspices of National Natural Science Foundation of China(No.42101414)Natural Science Found for Outstanding Young Scholars in Jilin Province(No.20230508106RC)。
文摘The burning of crop residues in fields is a significant global biomass burning activity which is a key element of the terrestrial carbon cycle,and an important source of atmospheric trace gasses and aerosols.Accurate estimation of cropland burned area is both crucial and challenging,especially for the small and fragmented burned scars in China.Here we developed an automated burned area mapping algorithm that was implemented using Sentinel-2 Multi Spectral Instrument(MSI)data and its effectiveness was tested taking Songnen Plain,Northeast China as a case using satellite image of 2020.We employed a logistic regression method for integrating multiple spectral data into a synthetic indicator,and compared the results with manually interpreted burned area reference maps and the Moderate-Resolution Imaging Spectroradiometer(MODIS)MCD64A1 burned area product.The overall accuracy of the single variable logistic regression was 77.38%to 86.90%and 73.47%to 97.14%for the 52TCQ and 51TYM cases,respectively.In comparison,the accuracy of the burned area map was improved to 87.14%and 98.33%for the 52TCQ and 51TYM cases,respectively by multiple variable logistic regression of Sentind-2 images.The balance of omission error and commission error was also improved.The integration of multiple spectral data combined with a logistic regression method proves to be effective for burned area detection,offering a highly automated process with an automatic threshold determination mechanism.This method exhibits excellent extensibility and flexibility taking the image tile as the operating unit.It is suitable for burned area detection at a regional scale and can also be implemented with other satellite data.
基金financially supported by the Geological Survey Project of China Geological Survey(DD20230077,DD20230456,DD20230424)。
文摘The analysis of hydrochemical characteristics and influencing factors of surface river on plateau is helpful to study water hydrological cycle and environmental evolution,which can scientifically guide rational development and utilization of water resources and planning of ecological environment protection.With the expansion and diversification of human activities,the quality of surface rivers will be more directly affected.Therefore,it is of great significance to pay attention to the hydrochemical characteristics of plateau surface rivers and the influence of human activities on their circulation and evolution.In this study,surface water in the Duoqu basin of Jinsha River located in Hengduan mountain region of Eastern Tibet was selected as the representative case.Twenty-three groups of surface water samples were collected to analyze the hydrochemical characteristics and ion sources based on correlation analysis,piper trigram,gibbs model,hydrogen and oxygen isotopic techniques.The results suggest the following:(1)The pH showed slight alkalinity with the value ranged from 7.25 to 8.62.Ca^(2+),Mg^(2+)and HCO_(3)^(–)were the main cations and anions.HCO_(3)^(-)Ca and HCO_(3)^(-)Ca·Mg were the primary hydrochemical types for the surface water of Duoqu River.The correlation analysis showed that TDS had the most significant correlation with Ca^(2+),Mg^(2+)and HCO_(3)^(–).Analysis on hydrogen and oxygen isotopes indicated that the surface rivers were mainly recharged by atmospheric precipitation and glacial melt water in this study area.(2)The surface water had a certain reverse cation alternating adsorption,and surface water ions were mainly derived from rock weathering,mainly controlled by weathering and dissolution of carbonates,and secondly by silicates and sodium rocks.(3)The influence of human activities was weak,while the development of cinnabar minerals had a certain impact on the hydrochemistry characteristics,which was the main factor for causing the increase of SO_(4)^(2–).The densely populated county towns and temples with frequent incense burning activities may cause some anomalies of surface water quality.At present,the Duoqu River watershed had gone through a certain influence of mineral exploitation,so the hydrological cycle and river eco-environment at watershed scale will still bound to be change.The results could provide basic support for better understanding water balance evolution as well as the ecological protection of Duoqu River watershed.
基金Supported by National Key R&D Project(2017YFB0405100)National Natural Science Foundation of China(61774024/61964007)Jilin province science and technology development plan(20190302007GX)。
文摘In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power at high injection currents.In this paper,a simplified numerical analysis model is proposed for 1.06μm long-cavity diode lasers by combining TPA and FCA losses with one-dimensional(1D)rate equations.The ef⁃fects of LSHB,TPA and FCA on the output characteristics are systematically analyzed,and it is proposed that ad⁃justing the front facet reflectivity and the position of the quantum well(QW)in the waveguide layer can improve the front facet output power.
基金supported by the Graduate Education Innovation Project of Shanxi Province(Grant No.2022Y650)the National Natural Science Foundation of China(Grant No.22275170)。
文摘To explore the composite process of B-CuO and B-Bi_(2)O_(3) two-component laminated sticks,obtain the corresponding sticks with good printing effect,and explore the energy release behavior.In this study,boron,copper oxide,and bismuth trioxide powders were dispersed in the dispersed phase (DMF) using F_(2602) as a binder,and the construction of two-component B-CuO,B-Bi_(2)O_(3),three-component microcomposite,and three-component macro-composite sticks were realized with the help of double nozzle direct ink writing (DIW) technique respectively.The resulting sticks were ignited by a nichrome wire energized with a direct current,and a high-speed camera system was used to record the combustion behavior of the sticks,mark the flame position,and calculate the rate of ignition.The results showed that the B-CuO stick burning rate (42.11 mm·s^(-1)) was much higher than that of B-Bi_(2)O_(3)(17.84 mm·s^(-1)).The formulation with the highest CuO content (ω_(CuO)=58.7%) in the microscale composite of the sticks also had the fastest burning rate of 60.59 mm·s^(-1),as the CuO content decreased (ω_(CuO)=43.5%,29.3%),its burning rate decreased to 34.78 mm·s^(-1),37.97 mm·s^(-1).The stick with the highest copper oxide content(ω_(CuO)=60%) also possessed the highest burning rate (48.84 mm·s^(-1)) in the macro-composite sticks,and the burning rates of the macro-composite sticks with component spacing of 0.1 mm,0.2 mm,and 0.5 mm were 43.34 mm·s^(-1),48.84 mm·s^(-1),and 40.76 mm·s^(-1).