Anti-Stokes/Stokes Raman peak intensity ratio was used to infer sample temperatures,but the influence factors of system correction factors were not clear.Non-contact in-situ anti-Stokes/Stokes temperature calibration ...Anti-Stokes/Stokes Raman peak intensity ratio was used to infer sample temperatures,but the influence factors of system correction factors were not clear.Non-contact in-situ anti-Stokes/Stokes temperature calibration was carried out for up to 1500 K based on six different samples under two excitation light sources(±50 K within 1000 K,±100 K above1000 K),and the system correction factorγwas systematically investigated.The results show that the correction factorγof anti-Stokes/Stokes thermometry is affected by the wavelength of the excitation light source,Raman mode peak position,temperature measurement region and other factors.The anti-Stokes/Stokes thermometry was applied to the laser-heating diamond anvil cell(LHDAC)experiment to investigate the anharmonic effect of h BN under high temperature and high pressure.It is concluded that the strong anharmonic effect caused by phonon scattering at low pressure gradually changes into the predominance of localized molecular lattice thermal expansion at high pressure.展开更多
Here,simultaneous in-situ calibration of pressures and temperatures was performed in a hinge-type second-stage cubic large volume press(LVP)up to 15 GPa and 1400 K by an acoustic travel-time approach.Based on the rece...Here,simultaneous in-situ calibration of pressures and temperatures was performed in a hinge-type second-stage cubic large volume press(LVP)up to 15 GPa and 1400 K by an acoustic travel-time approach.Based on the recently reported P-tSand P-T-tP-tSequations for Al2O3buffer rod,the cell pressures and temperatures in the chamber of LVP were insitu determined,in comparison with those by conventional off-line(or fixed-points)pressure calibration method and direct thermocouple measurement,respectively.It is found that the cell pressures of the LVP chamber are significantly reduced after annealing at simultaneous high pressures and high temperatures,owing to the stress relaxation as accumulate in the LVP chamber.This acoustic travel-time method is verified to be a good way for precise determination of thermal(cell)pressures at high temperature conditions,and is of great importance and necessity to conduct in-situ physical property measurements under extreme high P-T conditions,especially when the precious synchrotron x-ray/neutron diffraction beams are not available.展开更多
The calibration accuracy of High Resolution Infrared Radiation Sounder Mod. 2 (HIRS / 2) on NOAA-10 satellite is analyzed in this paper. The non-linear effect in the linear calibration curve induces a deviation of 1.5...The calibration accuracy of High Resolution Infrared Radiation Sounder Mod. 2 (HIRS / 2) on NOAA-10 satellite is analyzed in this paper. The non-linear effect in the linear calibration curve induces a deviation of 1.5 degrees (k) of brightness temperature in the tenth channel (8.3 um, water vapor absorption) of the HIRS/2 and the non-linear effect affects the other channels to a different extent. Based on analyzing non- linearity in two-point calibration curve, a tri-point calibration equation is given. A numerical test of effects of the linear and non-linear calibration models on the accuracy of atmospheric temperature retrievals is carried out.展开更多
The temperature control of the large-scale vertical quench furnace is very difficult due to its huge volume and complex thermal exchanges. To meet the technical requirement of the quenching process, a temperature cont...The temperature control of the large-scale vertical quench furnace is very difficult due to its huge volume and complex thermal exchanges. To meet the technical requirement of the quenching process, a temperature control system which integrates temperature calibration and temperature uniformity control is developed for the thermal treatment of aluminum alloy workpieces in the large-scale vertical quench furnace. To obtain the aluminum alloy workpiece temperature, an air heat transfer model is newly established to describe the temperature gradient distribution so that the immeasurable workpiece temperature can be calibrated from the available thermocouple temperature. To satisfy the uniformity control of the furnace temperature, a second order partial differential equation(PDE) is derived to describe the thermal dynamics inside the vertical quench furnace. Based on the PDE, a decoupling matrix is constructed to solve the coupling issue and decouple the heating process into multiple independent heating subsystems. Then, using the expert control rule to find a compromise of temperature rising time and overshoot during the quenching process. The developed temperature control system has been successfully applied to a 31 m large-scale vertical quench furnace, and the industrial running results show the significant improvement of the temperature uniformity, lower overshoot and shortened processing time.展开更多
Due to the complex erection environment of various types of automatic stations,the provincial meteorological inspection department is difficult to carry out this work in terms of equipment or staffing. For this reason...Due to the complex erection environment of various types of automatic stations,the provincial meteorological inspection department is difficult to carry out this work in terms of equipment or staffing. For this reason,a portable temperature sensor calibrator was developed,and it uses semiconductor refrigeration technology to increase and decrease temperature quickly. It uses an intelligent PID temperature controller as a control device to provide a stable temperature environment; it is small,light and easy to operate,and it provides technical support for the calibration of temperature sensors. The structure and working principle of this equipment were analyzed,and its performance was tested. All the indicators could meet the requirements of field calibration. The calibrator will provide a strong guarantee for the reliability of temperature data obtained at automatic meteorological stations.展开更多
A series of copolymers of ethylene with 1-hexene synthesized using a metallocene catalyst are selected and mixed. The blend is fractionated via preparative temperature rising elution fractionation(P-TREF). All fract...A series of copolymers of ethylene with 1-hexene synthesized using a metallocene catalyst are selected and mixed. The blend is fractionated via preparative temperature rising elution fractionation(P-TREF). All fractions are characterized via high-temperature gel permeation chromatography(GPC), 13 C nuclear magnetic resonance spectroscopy(13C-NMR), and differential scanning calorimetry(DSC). The changes in the DSC melting peak temperatures of the fractions from P-TREF as a function of elution temperature are almost linear, thereby providing a reference through which the elution temperature of TREF experiments could be selected. Moreover, the standard calibration curve(ethylene/1-hexene) of P-TREF is established, which relates to the degree of short-chain branching of the fractions. The standard calibration curve of P-TREF is beneficial to study on the complicated branching structure of polyethylene. A convenient method for selecting the fractionation temperature for TREF experiments is elaborated. The polyethylene sample is fractionated via successive self-nucleation and annealing(SSA) thermal fractionation. A multiple-melting endotherm is obtained through the final DSC heating scan for the sample after SSA thermal fractionation. A series of fractionation temperatures are then selected through the relationship between the DSC melting peak temperature and TREF elution temperature.展开更多
The slight-alkalization of generator internal cooling water(GICW)is widely used to inhibit the corrosion of hollow copper conductor and thereby ensure the safe operation of the generator.CO_(2) inleakage is increasing...The slight-alkalization of generator internal cooling water(GICW)is widely used to inhibit the corrosion of hollow copper conductor and thereby ensure the safe operation of the generator.CO_(2) inleakage is increasingly identified as a potential security risk for GICW system.In this paper,the influence of CO_(2) inleakage on the slight-alkalization of GICW was theoretically discussed.Based on the equilibriums of the CO_(2)-NaOH-H_(2)O system,CO_(2) inleakage saturation was derived to quantify the amount of the dissolved CO_(2) in GICW.This parameter can be directly calculated with the measured conductivity and the[Na+]of GICW.The influence of CO_(2) inleakage on the slight-alkalization conditioning of GICW and the measurement of its water quality parameters were then analyzed.The more severe the inleakage,the narrower the water quality operation ranges of GICW,resulting in the more difficult the slight-alkalization conditioning of GICW.The temperature calibrations of the conductivity and the pH value of GICW show nonlinear correlations with the amount of CO_(2) inleakage and the NaOH dosage.This study provides insights into the influence of CO_(2) inleakage on the slight-alkalization of GICW,which can serve as the theoretical basis for the actual slight-alkalization when CO_(2) inleakage occurs.展开更多
Purpose High energy photon source test facility(HEPS-TF)has manufactured a three-dimensional Hall probe to measure the cryogenic permanent magnet undulator(CPMU).Since the operating environment of the CPMU is the subc...Purpose High energy photon source test facility(HEPS-TF)has manufactured a three-dimensional Hall probe to measure the cryogenic permanent magnet undulator(CPMU).Since the operating environment of the CPMU is the subcooled liquid nitrogen(85K),the temperature of the Hall probe will have a decrease of several degrees while carrying out the local magnetic measurement.We established a magnetic field strength and temperature-dependent calibration system to calibrate the Hall probe.Methods The magnetic field strength of the Hall probe was calibrated by a standard dipole electromagnet and a nuclear magnetic resonance Tesla meter(NMR).The temperature of Hall probe was controlled by a control system which can modulate temperature from 0℃ to 30℃.Results A new homemade Hall probe has finished the temperature-dependent(0℃ to 30℃),magnetic field strength(-1.2 to 1.2 T)and angle error calibration at this new calibration system.The temperature correction error is less than 0.045%.The calibration error of magnetic field strength is less than 1.5 Gs.The RMS calibration error of Hall sensors angle matrix is less than 5.1E-5.Conclusion The magnetic field strength and temperature-dependent calibration system including a standard dipole electromagnet,a temperature regulation system,an NMR and a five-dimensional Hall bench was established.The detailed magnetic field strength and temperature-dependent calibration system is introduced and the results of the calibrations are presented.展开更多
A Michelson interferometer, on loan from EFDA-JET(Culham, United Kingdom)has recently been commissioned on the experimental advanced superconducting tokamak(EAST,ASIPP, Hefei, China). Following a successful in-sit...A Michelson interferometer, on loan from EFDA-JET(Culham, United Kingdom)has recently been commissioned on the experimental advanced superconducting tokamak(EAST,ASIPP, Hefei, China). Following a successful in-situ absolute calibration the instrument is able to measure the electron cyclotron emission(ECE) spectrum, from 80 GHz to 350 GHz in extraordinary mode(X-mode) polarization, with high accuracy. This allows the independent determination of the electron temperature profile from observation of the second harmonic ECE and the possible identification of non-Maxwellian features by comparing higher harmonic emission with numerical simulations. The in-situ calibration results are presented together with the initial measured temperature profiles. These measurements are then discussed and compared with other independent temperature profile measurements. This paper also describes the main hardware features of the diagnostic and the associated commissioning test results.展开更多
The small formicoxenine ant Temnothorax saxonicus was known from about 40 localities in Central Europe nesting in anorganie substrates on floor of xerothermous forests whereas investigations of 198 tree canopies in 19...The small formicoxenine ant Temnothorax saxonicus was known from about 40 localities in Central Europe nesting in anorganie substrates on floor of xerothermous forests whereas investigations of 198 tree canopies in 19 forest sites of the same region provided no indication for arboreal nesting or foraging. We present the first evidence for canopy-nesting populations of T. saxonicus on old Quercus trees in 3 sites having maximum calibrated topsoil temperatures of 17.9 ± 0.3 ℃ which were significantly (P 〈 0.007) lower than 22.8 ± 2.0 ℃ measured in 5 sites with ground-nesting populations. The thermal deficit on forest floor inhibits brood development in ground nests and caused a moving to canopy were maximum calibrated temperatures of the, now wooden, substrates are at least 26.1 ℃for the whole canopy and 30.8 ℃ in more sun-exposed spots. T. saxonieus competed here successfully with the obligatory canopy ants T. affinis and T. cortiealis. The distributional data of this rope-climbing study support former results that highest nest densities of small arboreal ants occur in temperate climate over the entire canopy mantle of single trees situated in open land or in park-like environments but occur in the top of the canopy in tree stands with high degree of canopy closure.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.U2030107)the Fundamental Research Funds for the Central Universities(Grant No.2020SCUNL107)。
文摘Anti-Stokes/Stokes Raman peak intensity ratio was used to infer sample temperatures,but the influence factors of system correction factors were not clear.Non-contact in-situ anti-Stokes/Stokes temperature calibration was carried out for up to 1500 K based on six different samples under two excitation light sources(±50 K within 1000 K,±100 K above1000 K),and the system correction factorγwas systematically investigated.The results show that the correction factorγof anti-Stokes/Stokes thermometry is affected by the wavelength of the excitation light source,Raman mode peak position,temperature measurement region and other factors.The anti-Stokes/Stokes thermometry was applied to the laser-heating diamond anvil cell(LHDAC)experiment to investigate the anharmonic effect of h BN under high temperature and high pressure.It is concluded that the strong anharmonic effect caused by phonon scattering at low pressure gradually changes into the predominance of localized molecular lattice thermal expansion at high pressure.
基金supported by the National Natural Science Foundation of China(Grant Nos.12075215,11872198,and U2030110)the National Key Research and Development Program of China(Grant No.2016YFA0401503)。
文摘Here,simultaneous in-situ calibration of pressures and temperatures was performed in a hinge-type second-stage cubic large volume press(LVP)up to 15 GPa and 1400 K by an acoustic travel-time approach.Based on the recently reported P-tSand P-T-tP-tSequations for Al2O3buffer rod,the cell pressures and temperatures in the chamber of LVP were insitu determined,in comparison with those by conventional off-line(or fixed-points)pressure calibration method and direct thermocouple measurement,respectively.It is found that the cell pressures of the LVP chamber are significantly reduced after annealing at simultaneous high pressures and high temperatures,owing to the stress relaxation as accumulate in the LVP chamber.This acoustic travel-time method is verified to be a good way for precise determination of thermal(cell)pressures at high temperature conditions,and is of great importance and necessity to conduct in-situ physical property measurements under extreme high P-T conditions,especially when the precious synchrotron x-ray/neutron diffraction beams are not available.
文摘The calibration accuracy of High Resolution Infrared Radiation Sounder Mod. 2 (HIRS / 2) on NOAA-10 satellite is analyzed in this paper. The non-linear effect in the linear calibration curve induces a deviation of 1.5 degrees (k) of brightness temperature in the tenth channel (8.3 um, water vapor absorption) of the HIRS/2 and the non-linear effect affects the other channels to a different extent. Based on analyzing non- linearity in two-point calibration curve, a tri-point calibration equation is given. A numerical test of effects of the linear and non-linear calibration models on the accuracy of atmospheric temperature retrievals is carried out.
基金Project(61174132)supported by the National Natural Science Foundation of ChinaProject(2015zzts047)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20130162110067)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘The temperature control of the large-scale vertical quench furnace is very difficult due to its huge volume and complex thermal exchanges. To meet the technical requirement of the quenching process, a temperature control system which integrates temperature calibration and temperature uniformity control is developed for the thermal treatment of aluminum alloy workpieces in the large-scale vertical quench furnace. To obtain the aluminum alloy workpiece temperature, an air heat transfer model is newly established to describe the temperature gradient distribution so that the immeasurable workpiece temperature can be calibrated from the available thermocouple temperature. To satisfy the uniformity control of the furnace temperature, a second order partial differential equation(PDE) is derived to describe the thermal dynamics inside the vertical quench furnace. Based on the PDE, a decoupling matrix is constructed to solve the coupling issue and decouple the heating process into multiple independent heating subsystems. Then, using the expert control rule to find a compromise of temperature rising time and overshoot during the quenching process. The developed temperature control system has been successfully applied to a 31 m large-scale vertical quench furnace, and the industrial running results show the significant improvement of the temperature uniformity, lower overshoot and shortened processing time.
文摘Due to the complex erection environment of various types of automatic stations,the provincial meteorological inspection department is difficult to carry out this work in terms of equipment or staffing. For this reason,a portable temperature sensor calibrator was developed,and it uses semiconductor refrigeration technology to increase and decrease temperature quickly. It uses an intelligent PID temperature controller as a control device to provide a stable temperature environment; it is small,light and easy to operate,and it provides technical support for the calibration of temperature sensors. The structure and working principle of this equipment were analyzed,and its performance was tested. All the indicators could meet the requirements of field calibration. The calibrator will provide a strong guarantee for the reliability of temperature data obtained at automatic meteorological stations.
基金financially supported by the National Natural Science Foundation of China(Nos.20734006 and 50921062)
文摘A series of copolymers of ethylene with 1-hexene synthesized using a metallocene catalyst are selected and mixed. The blend is fractionated via preparative temperature rising elution fractionation(P-TREF). All fractions are characterized via high-temperature gel permeation chromatography(GPC), 13 C nuclear magnetic resonance spectroscopy(13C-NMR), and differential scanning calorimetry(DSC). The changes in the DSC melting peak temperatures of the fractions from P-TREF as a function of elution temperature are almost linear, thereby providing a reference through which the elution temperature of TREF experiments could be selected. Moreover, the standard calibration curve(ethylene/1-hexene) of P-TREF is established, which relates to the degree of short-chain branching of the fractions. The standard calibration curve of P-TREF is beneficial to study on the complicated branching structure of polyethylene. A convenient method for selecting the fractionation temperature for TREF experiments is elaborated. The polyethylene sample is fractionated via successive self-nucleation and annealing(SSA) thermal fractionation. A multiple-melting endotherm is obtained through the final DSC heating scan for the sample after SSA thermal fractionation. A series of fractionation temperatures are then selected through the relationship between the DSC melting peak temperature and TREF elution temperature.
文摘The slight-alkalization of generator internal cooling water(GICW)is widely used to inhibit the corrosion of hollow copper conductor and thereby ensure the safe operation of the generator.CO_(2) inleakage is increasingly identified as a potential security risk for GICW system.In this paper,the influence of CO_(2) inleakage on the slight-alkalization of GICW was theoretically discussed.Based on the equilibriums of the CO_(2)-NaOH-H_(2)O system,CO_(2) inleakage saturation was derived to quantify the amount of the dissolved CO_(2) in GICW.This parameter can be directly calculated with the measured conductivity and the[Na+]of GICW.The influence of CO_(2) inleakage on the slight-alkalization conditioning of GICW and the measurement of its water quality parameters were then analyzed.The more severe the inleakage,the narrower the water quality operation ranges of GICW,resulting in the more difficult the slight-alkalization conditioning of GICW.The temperature calibrations of the conductivity and the pH value of GICW show nonlinear correlations with the amount of CO_(2) inleakage and the NaOH dosage.This study provides insights into the influence of CO_(2) inleakage on the slight-alkalization of GICW,which can serve as the theoretical basis for the actual slight-alkalization when CO_(2) inleakage occurs.
文摘Purpose High energy photon source test facility(HEPS-TF)has manufactured a three-dimensional Hall probe to measure the cryogenic permanent magnet undulator(CPMU).Since the operating environment of the CPMU is the subcooled liquid nitrogen(85K),the temperature of the Hall probe will have a decrease of several degrees while carrying out the local magnetic measurement.We established a magnetic field strength and temperature-dependent calibration system to calibrate the Hall probe.Methods The magnetic field strength of the Hall probe was calibrated by a standard dipole electromagnet and a nuclear magnetic resonance Tesla meter(NMR).The temperature of Hall probe was controlled by a control system which can modulate temperature from 0℃ to 30℃.Results A new homemade Hall probe has finished the temperature-dependent(0℃ to 30℃),magnetic field strength(-1.2 to 1.2 T)and angle error calibration at this new calibration system.The temperature correction error is less than 0.045%.The calibration error of magnetic field strength is less than 1.5 Gs.The RMS calibration error of Hall sensors angle matrix is less than 5.1E-5.Conclusion The magnetic field strength and temperature-dependent calibration system including a standard dipole electromagnet,a temperature regulation system,an NMR and a five-dimensional Hall bench was established.The detailed magnetic field strength and temperature-dependent calibration system is introduced and the results of the calibrations are presented.
基金supported by National Natural Science Foundation of China(Nos.11405211,11275233)the National Magnetic Confinement Fusion Science Program of China(Nos.2013GB106002,2015GB101000)+1 种基金the RCUK Energy Programme(No.EP/I501045)partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics(NSFC:No.11261140328)
文摘A Michelson interferometer, on loan from EFDA-JET(Culham, United Kingdom)has recently been commissioned on the experimental advanced superconducting tokamak(EAST,ASIPP, Hefei, China). Following a successful in-situ absolute calibration the instrument is able to measure the electron cyclotron emission(ECE) spectrum, from 80 GHz to 350 GHz in extraordinary mode(X-mode) polarization, with high accuracy. This allows the independent determination of the electron temperature profile from observation of the second harmonic ECE and the possible identification of non-Maxwellian features by comparing higher harmonic emission with numerical simulations. The in-situ calibration results are presented together with the initial measured temperature profiles. These measurements are then discussed and compared with other independent temperature profile measurements. This paper also describes the main hardware features of the diagnostic and the associated commissioning test results.
文摘The small formicoxenine ant Temnothorax saxonicus was known from about 40 localities in Central Europe nesting in anorganie substrates on floor of xerothermous forests whereas investigations of 198 tree canopies in 19 forest sites of the same region provided no indication for arboreal nesting or foraging. We present the first evidence for canopy-nesting populations of T. saxonicus on old Quercus trees in 3 sites having maximum calibrated topsoil temperatures of 17.9 ± 0.3 ℃ which were significantly (P 〈 0.007) lower than 22.8 ± 2.0 ℃ measured in 5 sites with ground-nesting populations. The thermal deficit on forest floor inhibits brood development in ground nests and caused a moving to canopy were maximum calibrated temperatures of the, now wooden, substrates are at least 26.1 ℃for the whole canopy and 30.8 ℃ in more sun-exposed spots. T. saxonieus competed here successfully with the obligatory canopy ants T. affinis and T. cortiealis. The distributional data of this rope-climbing study support former results that highest nest densities of small arboreal ants occur in temperate climate over the entire canopy mantle of single trees situated in open land or in park-like environments but occur in the top of the canopy in tree stands with high degree of canopy closure.