An air parametric array can generate a highly directional beam of audible sound in air,which has a wide range of applications in targeted audio delivery.Capacitive micromachined ultrasonic transducer(CMUTs)have great ...An air parametric array can generate a highly directional beam of audible sound in air,which has a wide range of applications in targeted audio delivery.Capacitive micromachined ultrasonic transducer(CMUTs)have great potential for air-coupled applications,mainly because of their low acoustic impedance.In this study,an air-coupled CMUT array is designed as an air parametric array.A hexagonal array is proposed to improve the directivity of the sound generated.A finite element model of the CMUT is established in COMSOL software to facilitate the choice of appropriate structural parameters of the CMUT cell.The CMUT array is then fabricated by a wafer bonding process with high consistency.The performances of the CMUT are tested to verify the accuracy of the finite element analysis.By optimizing the component parameters of the bias-T circuit used for driving the CMUT,DC and AC voltages can be effectively applied to the top and bottom electrodes of the CMUT to provide efficient ultrasound transmission.Finally,the prepared hexagonal array is successfully used to conduct preliminary experiments on its application as an air parametric array.展开更多
A theoretical model and mathematical description for silicon micromachined elec- trostatic or capacitive ultrasonic imaging transducers have been developed. Ac- cording to the model the basic performance parameters of...A theoretical model and mathematical description for silicon micromachined elec- trostatic or capacitive ultrasonic imaging transducers have been developed. Ac- cording to the model the basic performance parameters of such a transducer, such as natural frequencies, eigenfunctions, resonance and anti-resonance frequencies, and the mechanical impedance of the diaphragm can be predicted from the ge- ometry of the transducer and property parameters of materials used. The paper reveals that this type of transducers has two basic operation modes, correspond- ing to the resonance of a mass-spring oscillator comprised of the diaphragm and the air cushion, and the first-order bending mode of the diaphragm itself respec- tively, and presents an optimal method for extending the bandwidth by making the two modes coupled, and thereby provides a theoretical basis for the optimal de- sign.展开更多
Capacitive micromechanical ultrasonic transducers(CMUTs)have been widely studied because they can be used as substitutes for piezoelectric ultrasonic transducers in imaging applications.However,it is unclear whether a...Capacitive micromechanical ultrasonic transducers(CMUTs)have been widely studied because they can be used as substitutes for piezoelectric ultrasonic transducers in imaging applications.However,it is unclear whether and how CMUTs can be developed for sensors incorporating other functions.For instance,researchers have proposed the use of CMUTs for pressure sensing,but fundamental and practical application issues remain unsolved.This study explored ways in which a pressure sensor can be properly developed based on a CMUT prototype using a simulation approach.A three-dimensional finite element model of CMUTs was designed using the COMSOL Multiphysics software by combining the working principle of CMUTs with pressure sensing characteristics in which the resonance frequency of the CMUT cell shifts accordingly when it is subjected to an external pressure.Simultaneously,when subjected to pressure,the CMUT membrane deforms,thus the pressure can be reflected by the change in the capacitance.展开更多
Capacitive Micromachined Ultrasonic Transducer (CMUT) technology, which has been widely studied in the field of medical imaging, possesses strong design flexibility due to its manufacturing process. Many applications ...Capacitive Micromachined Ultrasonic Transducer (CMUT) technology, which has been widely studied in the field of medical imaging, possesses strong design flexibility due to its manufacturing process. Many applications could benefit from this unique feature, especially those that require different operating ultrasonic frequencies. This article reports on the characterization of the therapeutic low-frequency field provided by an ultrasound-guided focused ultrasound CMUT probe that is connected to a custom ultrasonic scanner for hyperthermia applications. The study begins by mapping the focused ultrasonic beam in the vicinity of the focal spot and a parametric analysis providing the maximum peak-to-peak (PTP) pressure delivered by the probe under different acoustic conditions. The measured maximum PTP pressure at the targeted operating frequency of 1 MHz is 3 MPa, with a maximum of 3.6 MPa at 1.25 MHz. Based on an in vitro setup found in the literature, the temperature elevation at the focal point was measured, showing results in agreement with the targeted applications (max. ΔT = 7.5°C). The article concludes with a reliability study considering the delivered pressure and the self-heating of the CMUT probe: the results show the good stability of the pressure amplitude over 1.8 × 109 cycles at a duty cycle of 40%, with a moderate internal heating of 3°C.展开更多
基金the National Key R&D Program of China(Nos.2017YFA0205103 and 2018YFE020505)the National Natural Science Foundation of China(Nos.81571766 and 61771337)+1 种基金the Natural Science Foundation of Tianjin,China(No.17JCYBJC24400)the“111”Project of China(No.B07014).
文摘An air parametric array can generate a highly directional beam of audible sound in air,which has a wide range of applications in targeted audio delivery.Capacitive micromachined ultrasonic transducer(CMUTs)have great potential for air-coupled applications,mainly because of their low acoustic impedance.In this study,an air-coupled CMUT array is designed as an air parametric array.A hexagonal array is proposed to improve the directivity of the sound generated.A finite element model of the CMUT is established in COMSOL software to facilitate the choice of appropriate structural parameters of the CMUT cell.The CMUT array is then fabricated by a wafer bonding process with high consistency.The performances of the CMUT are tested to verify the accuracy of the finite element analysis.By optimizing the component parameters of the bias-T circuit used for driving the CMUT,DC and AC voltages can be effectively applied to the top and bottom electrodes of the CMUT to provide efficient ultrasound transmission.Finally,the prepared hexagonal array is successfully used to conduct preliminary experiments on its application as an air parametric array.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 60374044 and 69974001)
文摘A theoretical model and mathematical description for silicon micromachined elec- trostatic or capacitive ultrasonic imaging transducers have been developed. Ac- cording to the model the basic performance parameters of such a transducer, such as natural frequencies, eigenfunctions, resonance and anti-resonance frequencies, and the mechanical impedance of the diaphragm can be predicted from the ge- ometry of the transducer and property parameters of materials used. The paper reveals that this type of transducers has two basic operation modes, correspond- ing to the resonance of a mass-spring oscillator comprised of the diaphragm and the air cushion, and the first-order bending mode of the diaphragm itself respec- tively, and presents an optimal method for extending the bandwidth by making the two modes coupled, and thereby provides a theoretical basis for the optimal de- sign.
文摘Capacitive micromechanical ultrasonic transducers(CMUTs)have been widely studied because they can be used as substitutes for piezoelectric ultrasonic transducers in imaging applications.However,it is unclear whether and how CMUTs can be developed for sensors incorporating other functions.For instance,researchers have proposed the use of CMUTs for pressure sensing,but fundamental and practical application issues remain unsolved.This study explored ways in which a pressure sensor can be properly developed based on a CMUT prototype using a simulation approach.A three-dimensional finite element model of CMUTs was designed using the COMSOL Multiphysics software by combining the working principle of CMUTs with pressure sensing characteristics in which the resonance frequency of the CMUT cell shifts accordingly when it is subjected to an external pressure.Simultaneously,when subjected to pressure,the CMUT membrane deforms,thus the pressure can be reflected by the change in the capacitance.
文摘Capacitive Micromachined Ultrasonic Transducer (CMUT) technology, which has been widely studied in the field of medical imaging, possesses strong design flexibility due to its manufacturing process. Many applications could benefit from this unique feature, especially those that require different operating ultrasonic frequencies. This article reports on the characterization of the therapeutic low-frequency field provided by an ultrasound-guided focused ultrasound CMUT probe that is connected to a custom ultrasonic scanner for hyperthermia applications. The study begins by mapping the focused ultrasonic beam in the vicinity of the focal spot and a parametric analysis providing the maximum peak-to-peak (PTP) pressure delivered by the probe under different acoustic conditions. The measured maximum PTP pressure at the targeted operating frequency of 1 MHz is 3 MPa, with a maximum of 3.6 MPa at 1.25 MHz. Based on an in vitro setup found in the literature, the temperature elevation at the focal point was measured, showing results in agreement with the targeted applications (max. ΔT = 7.5°C). The article concludes with a reliability study considering the delivered pressure and the self-heating of the CMUT probe: the results show the good stability of the pressure amplitude over 1.8 × 109 cycles at a duty cycle of 40%, with a moderate internal heating of 3°C.