期刊文献+
共找到180篇文章
< 1 2 9 >
每页显示 20 50 100
A Unifi ed View of Carbon Neutrality:Solar-Driven Selective Upcycling of Waste Plastics
1
作者 Zhiyong Zhao Shuai Yue +2 位作者 Gaohua Yang Pengfei Wang Sihui Zhan 《Transactions of Tianjin University》 EI CAS 2024年第1期1-26,共26页
With the rapid development of plastic production and consumption globally,the amount of post-consumer plastic waste has reached levels that have posed environmental threats.Considering the substantial CO_(2)emissions ... With the rapid development of plastic production and consumption globally,the amount of post-consumer plastic waste has reached levels that have posed environmental threats.Considering the substantial CO_(2)emissions throughout the plastic lifecycle from material production to its disposal,photocatalysis is considered a promising strategy for eff ective plastic recycling and upcycling.It can upgrade plastics into value-added products under mild conditions using solar energy,realizing zero carbon emissions.In this paper,we explain the basics of photocatalytic plastic reformation and underscores plastic feedstock reformation pathways into high-value-added products,including both degradation into CO_(2)followed by reformation and direct reformation into high-value-added products.Finally,the current applications of transforming plastic waste into fuels,chemicals,and carbon materials and the outlook on upcycling plastic waste by photocatalysis are presented,facilitating the realization of carbon neutrality and zero plastic waste. 展开更多
关键词 PHOTOCATALYSIS Photoreforming Plastics upcycling carbon neutrality Energy storage and conversion
下载PDF
Emission-side drivers affecting carbon neutrality based on vegetation carbon sequestration:Evidence from China
2
作者 Han Wang 《Chinese Journal of Population,Resources and Environment》 2024年第1期87-97,共11页
To address climate change,the world needs deep decarbonization to achieve carbon neutrality(CN),which implies net-zero human-caused CO_(2) emissions in the atmosphere.This study used emission-side drivers,including so... To address climate change,the world needs deep decarbonization to achieve carbon neutrality(CN),which implies net-zero human-caused CO_(2) emissions in the atmosphere.This study used emission-side drivers,including socioeconomic and net primary productivity(NPP)-based factors,to determine the changes in CN based on vegetation carbon sequestration in the case of China during 2001-2015.Spatial exploratory analysis as well as the combined use of production-theoretical decomposition analysis(PDA)and an econometric model were also utilized.We showed that CN was significantly spatially correlated over the study period;Yunnan,Heilongjiang,and Jilin presented positive spatial autocorrelations,whereas Guizhou showed a negative spatial autocorrelation.More than half of CN declined over the period during which potential energy intensity(PEIE)and energy usage technological change were the largest negative and positive drivers for increasing CN.PEIE played a significantly negative role in increasing CN.We advise policymakers to focus more on emission-side drivers(e.g.,energy intensity)in addition to strengthening NPP management to achieve CN. 展开更多
关键词 carbon neutrality Vegetation carbon sequestration Production-theoretical decomposition analysis Econometric model
下载PDF
Gleaning insights from German energy transition and large-scale underground energy storage for China’s carbon neutrality 被引量:5
3
作者 Yachen Xie Xuning Wu +6 位作者 Zhengmeng Hou Zaoyuan Li Jiashun Luo Christian Truitt Lüddeke Liangchao Huang Lin Wu Jianxing Liao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第5期529-553,共25页
The global energy transition is a widespread phenomenon that requires international exchange of experiences and mutual learning.Germany’s success in its first phase of energy transition can be attributed to its adopt... The global energy transition is a widespread phenomenon that requires international exchange of experiences and mutual learning.Germany’s success in its first phase of energy transition can be attributed to its adoption of smart energy technology and implementation of electricity futures and spot marketization,which enabled the achievement of multiple energy spatial–temporal complementarities and overall grid balance through energy conversion and reconversion technologies.While China can draw from Germany’s experience to inform its own energy transition efforts,its 11-fold higher annual electricity consumption requires a distinct approach.We recommend a clean energy system based on smart sector coupling(ENSYSCO)as a suitable pathway for achieving sustainable energy in China,given that renewable energy is expected to guarantee 85%of China’s energy production by 2060,requiring significant future electricity storage capacity.Nonetheless,renewable energy storage remains a significant challenge.We propose four large-scale underground energy storage methods based on ENSYSCO to address this challenge,while considering China’s national conditions.These proposals have culminated in pilot projects for large-scale underground energy storage in China,which we believe is a necessary choice for achieving carbon neutrality in China and enabling efficient and safe grid integration of renewable energy within the framework of ENSYSCO. 展开更多
关键词 carbon neutrality Energy transition Large-scale underground energy storage Sector coupling
下载PDF
International experience of carbon neutrality and prospects of key technologies:Lessons for China 被引量:3
4
作者 Zheng-Meng Hou Ying Xiong +9 位作者 Jia-Shun Luo Yan-Li Fang Muhammad Haris Qian-Jun Chen Ye Yue Lin Wu Qi-Chen Wang Liang-Chao Huang Yi-Lin Guo Ya-Chen Xie 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期893-909,共17页
Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological lev... Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological level,each country should build a carbon-neutral plan based on its national conditions.Compared with other major developed countries(e.g.,Germany,the United States and Japan),China's carbon neutrality has much bigger challenges,including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels.Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon,near-zero carbon,and negative carbon emissions.Technological innovations associated with coal,oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed.Based on integrated analysis of international experience from the world's major developed countries,in-depth knowledge of the current and future technologies,and China's energy and ecological resources potential,five lessons for the implementation of China's carbon neutrality are proposed:(1)transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern;(2)renewable power-to-X and large-scale underground energy storage;(3)integration of green hydrogen production,storage,transport and utilization;(4)construction of clean energy systems based on smart sector coupling(ENSYSCO);(5)improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China.This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China,and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation. 展开更多
关键词 International experience carbon reduction technologies carbon neutrality Energy transition Underground energy storage carbon capture utilization and storage(CCUS)
下载PDF
Progress, challenge and significance of building a carbon industry system in the context of carbon neutrality strategy 被引量:1
5
作者 ZOU Caineng WU Songtao +7 位作者 YANG Zhi PAN Songqi WANG Guofeng JIANG Xiaohua GUAN Modi YU Cong YU Zhichao SHEN Yue 《Petroleum Exploration and Development》 2023年第1期210-228,共19页
Carbon dioxide storage and utilization has become an inevitable trend and choice for sustainable development under the background of global climate change and carbon neutrality.Carbon industry which is dominated by CO... Carbon dioxide storage and utilization has become an inevitable trend and choice for sustainable development under the background of global climate change and carbon neutrality.Carbon industry which is dominated by CO_(2) capture,utilization and storage/CO_(2) capture and storage(CCUS/CCS)is becoming a new strategic industry under the goal of carbon neutrality.The sustainable development of carbon industry needs to learn from the experiences of global oil and gas industry development.There are three types of“carbon”in the earth system.Black carbon is the CO_(2) that has not been sequestered or used and remains in the atmosphere for a long time;grey carbon is the CO_(2) that has been fixed or permanently sequestered in the geological body,and blue carbon is the CO_(2) that could be converted into products for human use through biological,physical,chemical and other ways.The carbon industry system covers carbon generation,carbon capture,carbon transportation,carbon utilization,carbon sequestration,carbon products,carbon finance,and other businesses.It is a revolutionary industrial field to completely eliminate“black carbon”.The development of carbon industry technical system takes carbon emission reduction,zero carbon,negative carbon and carbon economy as the connotation,and the construction of a low-cost and energy-efficient carbon industry system based on CCUS/CCS are strategic measures to achieve the goal of carbon neutrality and clean energy utilization globally.This will promote the“four 80%s”transformation of China's energy supply,namely,to 2060,the percentage of zero-carbon new energy in the energy consumption will be over 80%and the CO_(2) emission will be decreased by 80%to ensure the carbon emission reduction of total 80×10^(8) t from the percentage of carbon-based fossil energy in the energy consumption of over 80%,and the percentage of CO_(2) emission from energy of over 80%in 2021.The carbon industry in China is facing three challenges,large CO_(2) emissions,high percentage of coal in energy consumption,and poor innovative system.Three strategic measures are proposed accordingly,including:(1)unswervingly develop carbon industrial system and ensure the achievement of carbon neutrality as scheduled by 2060;(2)vigorously develop new energy sources and promote a revolutionary transformation of China’s energy production and consumption structure;(3)accelerate the establishment of scientific and technological innovation system of the whole CO_(2) industry.It is of great significance for continuously optimization of ecological environment and construction of green earth and ecological earth to develop the carbon industry system,utilize clean energy,and achieve the strategic goal of global carbon neutrality. 展开更多
关键词 carbon industry system carbon neutrality carbon sequestration green earth carbon footprint carbon trade peak carbon dioxide emission dual carbon target
下载PDF
Green microfluidics in microchemical engineering for carbon neutrality
6
作者 Qingming Ma Jianhong Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期332-345,共14页
The concept of“carbon neutrality”poses a huge challenge for chemical engineering and brings great opportunities for boosting the development of novel technologies to realize carbon offsetting and reduce carbon emiss... The concept of“carbon neutrality”poses a huge challenge for chemical engineering and brings great opportunities for boosting the development of novel technologies to realize carbon offsetting and reduce carbon emissions.Developing high-efficient,low-cost,energy-efficient and eco-friendly microfluidicbased microchemical engineering is of great significance.Such kind of“green microfluidics”can reduce carbon emissions from the source of raw materials and facilitate controllable and intensified microchemical engineering processes,which represents the new power for the transformation and upgrading of chemical engineering industry.Here,a brief review of green microfluidics for achieving carbon neutral microchemical engineering is presented,with specific discussions about the characteristics and feasibility of applying green microfluidics in realizing carbon neutrality.Development of green microfluidic systems are categorized and reviewed,including the construction of microfluidic devices by bio-based substrate materials and by low carbon fabrication methods,and the use of more biocompatible and nondestructive fluidic systems such as aqueous two-phase systems(ATPSs).Moreover,low carbon applications benefit from green microfluidics are summarized,ranging from separation and purification of biomolecules,high-throughput screening of chemicals and drugs,rapid and cost-effective detections,to synthesis of fine chemicals and novel materials.Finally,challenges and perspectives for further advancing green microfluidics in microchemical engineering for carbon neutrality are proposed and discussed. 展开更多
关键词 Microchemical engineering carbon neutrality MICROFLUIDICS Aqueous two-phase systems(ATPSs) ENVIRONMENT Chemical processes
下载PDF
Prospects for the transformation and development of carbon storage in abandoned mines of coal enterprises from the perspective ofcarbon neutrality
7
作者 Xin Lyu Tong Zhang +1 位作者 Liang Yuan Juejing Fang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第3期24-40,共17页
Under the carbon neutrality goal,coal enterprises must seek breakthroughs from abandoned mines,develop new resources in the new era,turn problems into countermeasures,and participate in the carbon emissions market,for... Under the carbon neutrality goal,coal enterprises must seek breakthroughs from abandoned mines,develop new resources in the new era,turn problems into countermeasures,and participate in the carbon emissions market,for contributing to the accomplishment of the national strategic goal of carbon neutrality.To this end,we investigated the relevant national policies and regulations to clarify the boundaries disclosed by the carbon information of enterprises,understood the development direction of carbon storage in abandoned mines,and clarified the transformation and development of carbon storage in aban-doned mines.We made a few suggestions:(1)China should learn from its past experience and other countries to develop the energy industry with Chinese characteristics and reform the economic system.(2)Coal enterprises must actively respond to the national carbon information disclosure policy,clarify their own responsibilities and carbon emission boundaries.(3)It is necessary to proactively obtain advanced knowledge and plan carbon storage pathways for abandoned mines.(4)Devel-opment problems of coal enterprises should be deduced using cases.The'dual carbon'goals should be achieved steadily step-by-step.(5)Three measures,i.e.improving the existing resource structure,coordinating the information of abandoned mines,and promoting the cultivation of scientific and technological talents. 展开更多
关键词 Mining engineering Abandoned mines carbon neutrality carbon emission rights carbon tax
下载PDF
Recovery of greenhouse gas as cleaner fossil fuel contributes to carbon neutrality
8
作者 Xin Zhang Jian-Rong Li 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期351-353,共3页
Under the context of carbon neutrality of China,it is urgent to shift our energy supply towards cleaner fuels as well as to reduce the greenhouse gas emission.Currently,coal is the main fossil fuel energy source of Ch... Under the context of carbon neutrality of China,it is urgent to shift our energy supply towards cleaner fuels as well as to reduce the greenhouse gas emission.Currently,coal is the main fossil fuel energy source of China.The country is striving hard to replace it with methane,a cleaner fossil fuel.Although China has rich geological resources of methane as coal bed methane(CBM)reserves,it is quite challenging to utilize them due to low concentration.The CBM is however mainly emitted directly to atmosphere during coal mining,causing waste of the resource and huge contribution to greenhouse effect.The recent work by Yang et al.demonstrated a potential solution to extract low concentration methane selectively from CBM through using MOF materials as sorbents.Such kind of materials and associated separation technology are promising to reduce greenhouse gas emission and promote the methane production capability,which would contribute to carbon neutrality in dual pathways. 展开更多
关键词 carbon neutrality Coal bed methane Metal–organic frameworks Greenhouse gas Fossil fuel
下载PDF
Review on the challenges and strategies in oil and gas industry's transition towards carbon neutrality in China
9
作者 Qi Zhang Jiang-Feng Liu +2 位作者 Zhi-Hui Gao Si-Yuan Chen Bo-Yu Liu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3931-3944,共14页
In light of carbon-neutral pledge, the oil and gas industry has been facing several critical new challenges in China. The current status and new challenges in terms of market mechanism reform, supply-consumption balan... In light of carbon-neutral pledge, the oil and gas industry has been facing several critical new challenges in China. The current status and new challenges in terms of market mechanism reform, supply-consumption balance and key technology innovation in China's oil and gas industry are reviewed in the present study, and new strategies and roadmaps are proposed to cope with the challenges. The study found that (i) the oil and gas market faces challenges such as incomplete pricing mechanisms, unclear subject rights, and the lack of recognition and trading of carbon assets. (ii) the trade-off between short-term supply security and long-term low-carbon supply is the most critical issue. (iii) in addition to typical challenges such as immature technology and lack of funding support, the unclear multiple technology coupling development mode also poses problems for the low-carbon transformation of the oil and gas industry. To address these new challenges, comprehensive strategies and roadmaps for China's oil and gas industry towards carbon neutrality are proposed and discussed in the aspects of participating in market transactions, restructuring production and consumption, deploying key technology innovations, and planning enterprise strategies. The present study is expected to provide a blueprint for the future development of China's oil and gas industry towards carbon neutrality. 展开更多
关键词 China's oil and gas industry carbon neutrality Challenges and strategies
下载PDF
Bioenergy Perspectives in the EU Regions: Carbon Neutrality Pathway
10
作者 Svetlana Proskurina Mariusz Jerzy Stolarski Esa Vakkilainen 《Journal of Sustainable Bioenergy Systems》 CAS 2023年第1期16-39,共24页
Bioenergy plays an important role in the climate neutrality targets of the EU. However, the status of bioenergy implementation varies greatly across the EU. The aim of this paper is to assess the role of bioenergy in ... Bioenergy plays an important role in the climate neutrality targets of the EU. However, the status of bioenergy implementation varies greatly across the EU. The aim of this paper is to assess the role of bioenergy in different EU countries using EU experts’ opinions of bioenergy implementation in their own country. The paper identifies leading and lagging countries in biomass development by focusing on the current share of bioenergy in the total energy supply. The study shows differences in bioenergy development between Southern and Western EU countries with Northern and Eastern EU countries. The anti-bioenergy movement and continuing political support for the fossil fuel industry are important barriers inhibiting biomass development in many EU countries, especially in Southern Europe and Western Europe. Our analysis finds that the EU needs more factual bioenergy information and improved promotion of bioenergy throughout society, especially in southern and western parts of the EU. Bioenergy development in the EU can be looked at optimistically, especially in Northern and Eastern Europe. The experience of societal acceptance of bioenergy in countries such as Finland and Sweden is applicable to countries that have thus far seen less progress in bioenergy implementation such as Poland and the Netherlands. 展开更多
关键词 BIOENERGY BIOECONOMY Renewable Energy EU Targets carbon neutrality
下载PDF
Research on Carbon Peak and Carbon Neutrality Technological Pathways in the Chinese Papermaking Industry
11
作者 Zaifeng Zhou Fuxiang Wei 《Paper And Biomaterials》 CAS 2023年第4期69-79,共11页
Against the backdrop of the dual carbon goals,the papermaking industry in China faces significant pressure to reduce emissions and lower carbon intensity.Based on historical data of energy consumption in the pulp and ... Against the backdrop of the dual carbon goals,the papermaking industry in China faces significant pressure to reduce emissions and lower carbon intensity.Based on historical data of energy consumption in the pulp and paper industry in China from 2000 to 2020,this study analyzed the current status of paper production and energy consumption in China.Two methods were employed to predict the growth trend of paper production in China,and three carbon dioxide emission accounting methods were compared.The study used an accounting method based on the industry’s overall energy consumption and predicted the carbon dioxide(CO_(2))emissions of the Chinese papermaking industry from 2021 to 2060 under three scenarios.The study identified the timing for achieving carbon peak and proposed the measures for carbon neutrality.The results indicated that:(1)the CO_(2)emissions of the Chinese papermaking industry in 2020 were 111.98 million tons.(2)Under low-demand,high-demand,and baseline scenarios,the papermaking industry is expected to achieve carbon peak during the“14th Five-Year Plan”period.(3)In 2060,under the three scenarios,CO_(2)emissions from the papermaking industry will decrease by 11%-31%compared to the baseline year.However,there will still be emissions of 72-93 million tons,requiring reductions in fossil energy consumption at the source,increasing forestry carbon sequestration and utilization of Carbon Capture,Utilization and Storage(CCUS)technology,and taking measures such as carbon trading to achieve carbon neutrality. 展开更多
关键词 pulp and paper industry carbon dioxide emissions scenario analysis and prediction carbon peak and carbon neutrality decarbonization pathway
下载PDF
Research on the Spatiotemporal Evolution,and Optimized Paths of Carbon Pressure in Northwestern Sichuan under the Carbon Peaking and Carbon Neutrality Goals
12
作者 Xue Lei Li Miaomiao 《Contemporary Social Sciences》 2023年第1期44-62,共19页
Consolidating carbon sink capacity and reducing carbon pressure are important channels to achieve the carbon peaking and carbon neutrality goals actively yet prudently.In order to study the current situation of carbon... Consolidating carbon sink capacity and reducing carbon pressure are important channels to achieve the carbon peaking and carbon neutrality goals actively yet prudently.In order to study the current situation of carbon pressure in the Northwestern Sichuan,we took the carbon pressure of the Aba Tibetan-Qiang autonomous prefecture(Aba prefecture)as an example and used the Intergovernmental Panel on Climate Change(IPCC)approach to measure the carbon emissions,carbon uptake,and the carbon balance index(CBI)of each county-level city in Aba prefecture from 2012 to 2020.The study found that:(a)There was a continuous trend of declining carbon emissions,increased carbon uptake,and decreased CBI in Aba prefecture during the sample period,but there is a large variability among county-level cities;(b)Aba prefecture differs in the spatiotemporal distribution of carbon emissions,carbon uptake,and CBI.Based on the research results,we propose several optimized paths for alleviating the current carbon pressure situation in the Northwestern Sichuan. 展开更多
关键词 carbon peaking and carbon neutrality goals the Northwestern Sichuan carbon pressure PATH
下载PDF
Carbon Footprint Analysis of Buildings Based on LCA Theory Under Carbon Neutrality Goals:Taking the 3rd China International Solar Decathlon Competition as an Example
13
作者 Zeyu Yang Zao Li Yitian Wang 《Journal of Architectural Research and Development》 2023年第1期25-32,共8页
This paper focuses on the design of residential buildings oriented to the efficient use of solar energy,and selects the entries HUI HOUSE of Hefei University of Technology and Lille I University of France in the 3rd C... This paper focuses on the design of residential buildings oriented to the efficient use of solar energy,and selects the entries HUI HOUSE of Hefei University of Technology and Lille I University of France in the 3rd China International Solar Decathlon China Competition,based on the theory of the life cycle assessment(LCA)of buildings,and analyzes the carbon footprint from four aspects:building materials production and transportation stage,building construction stage,building operation stage,and building demolition stage.Through the calculation of the carbon footprint of buildings,the socio-economic benefits of HUI HOUSE in carbon reduction were analyzed;the result of the calculation was that HUI HOUSE achieved carbon neutrality in the ninth year,and continued carbon reduction after that,contributing a cumulative total of 947.54 tons of carbon negative in the life cycle of buildings. 展开更多
关键词 Zero-energy buildings carbon emissions from buildings carbon neutrality in buildings Solar Decathlon
下载PDF
Policy and Management of Carbon Peaking and Carbon Neutrality:A Literature Review 被引量:17
14
作者 Yi-Ming Wei Kaiyuan Chen +3 位作者 Jia-Ning Kang Weiming Chen Xiang-Yu Wang Xiaoye Zhang 《Engineering》 SCIE EI CAS 2022年第7期52-63,共12页
The vision of reaching a carbon peak and achieving carbon neutrality is guiding the low-carbon transition of China’s socioeconomic system.Currently,a research gap remains in the existing literature in terms of studie... The vision of reaching a carbon peak and achieving carbon neutrality is guiding the low-carbon transition of China’s socioeconomic system.Currently,a research gap remains in the existing literature in terms of studies that systematically identify opportunities to achieve carbon neutrality.To address this gap,this study comprehensively collates and investigates 1105 published research studies regarding carbon peaking and carbon neutrality.In doing so,the principles of development in this area are quantitively analyzed from a space–time perspective.At the same time,this study traces shifts and alterations in research hotspots.This systematic review summarizes the priorities and standpoints of key industries on carbon peaking and carbon neutrality.Furthermore,with an emphasis on five key management science topics,the scientific concerns and strategic demands for these two carbon emission-reduction goals are clarified.The paper ends with theoretical insights on and practical countermeasures for actions,priority tasks,and policy measures that will enable China to achieve a carbon-neutral future.This study provides a complete picture of the research status on carbon peaking and carbon neutrality,as well as the research directions worth investigating in this field,which are crucial to the formulation of carbon peak and carbon neutrality policies. 展开更多
关键词 carbon peak carbon neutrality Systematic review carbon management
下载PDF
Single-atom catalysis for carbon neutrality 被引量:8
15
作者 Ligang Wang Dingsheng Wang Yadong Li 《Carbon Energy》 SCIE CAS 2022年第6期1021-1079,共59页
Currently,more than 86%of global energy consumption is still mainly dependent on traditional fossil fuels,which causes resource scarcity and even emission of high amounts of carbon dioxide(CO_(2)),resulting in a sever... Currently,more than 86%of global energy consumption is still mainly dependent on traditional fossil fuels,which causes resource scarcity and even emission of high amounts of carbon dioxide(CO_(2)),resulting in a severe“Greenhouse effect.”Considering this situation,the concept of“carbon neutrality”has been put forward by 125 countries one after another.To achieve the goals of“carbon neutrality,”two main strategies to reduce CO_(2) emissions and develop sustainable clean energy can be adopted.Notably,these are crucial for the synthesis of advanced single-atom catalysts(SACs)for energyrelated applications.In this review,we highlight unique SACs for conversion of CO_(2) into high-efficiency carbon energy,for example,through photocatalytic,electrocatalytic,and thermal catalytic hydrogenation technologies,to convert CO_(2) into hydrocarbon fuels(CO,CH_(4),HCOOH,CH_(3)OH,and multicarbon[C_(2+)]products).In addition,we introduce advanced energy conversion technologies and devices to replace traditional polluting fossil fuels,such as photocatalytic and electrocatalytic water splitting to produce hydrogen energy and a high-efficiency oxygen reduction reaction(ORR)for fuel cells.Impressively,several representative examples of SACs(including d-,ds-,p-,and f-blocks)for CO_(2) conversion,water splitting to H2,and ORR are discussed to describe synthesis methods,characterization,and corresponding catalytic activity.Finally,this review concludes with a description of the challenges and outlooks for future applications of SACs in contributing toward carbon neutrality. 展开更多
关键词 carbon neutrality CO_(2)reduction reaction single-atom catalysts sustainable clean energy
下载PDF
Near-Real-Time Carbon Emission Accounting Technology Toward Carbon Neutrality 被引量:7
16
作者 Zhu Liu Taochun Sun +5 位作者 Ying Yu Piyu Ke Zhu Deng Chenxi Lu Da Huo Xiang Ding 《Engineering》 SCIE EI CAS 2022年第7期44-51,共8页
Climate change is the greatest environmental threat to humans and the planet in the 21st century.Global anthropogenic greenhouse gas emissions are one of the main causes of the increasing number of extreme climate eve... Climate change is the greatest environmental threat to humans and the planet in the 21st century.Global anthropogenic greenhouse gas emissions are one of the main causes of the increasing number of extreme climate events.Cumulative carbon dioxide(CO_(2))emissions showed a linear relationship with cumulative temperature rise since the pre-industrial stage,and this accounts for approximately 80%of the total anthropogenic greenhouse gases.Therefore,accurate and reliable carbon emission data are the foundation and scientific basis for most emission reduction policymaking and target setting.Currently,China has made clear the ambitious goal of achieving the peak of carbon emissions by 2030 and achieving carbon neutrality by 2060.The development of a finer-grained spatiotemporal carbon emission database is urgently needed to achieve more accurate carbon emission monitoring for continuous implementation and the iterative improvement of emission reduction policies.Near-real-time carbon emission monitoring is not only a major national demand but also a scientific question at the frontier of this discipline.This article reviews existing annual-based carbon accounting methods,with a focus on the newly developed real-time carbon emission technology and its current application trends.We also present a framework for the latest near-real-time carbon emission accounting technology that can be widely used.The development of relevant data and methods will provide strong database support to the policymaking for China’s“carbon neutrality”strategy.Finally,this article provides an outlook on the future of real-time carbon emission monitoring technology. 展开更多
关键词 carbon neutrality carbon accounting carbon monitoring
下载PDF
Major contribution to carbon neutrality by China’s geosciences and geological technologies 被引量:11
17
作者 Yao Wang Chi-hui Guo +5 位作者 Shu-rong Zhuang Xi-jie Chen Li-qiong Jia Ze-yu Chen Zi-long Xia Zhen Wu 《China Geology》 2021年第2期329-352,共24页
In the context of global climate change,geosciences provide an important geological solution to achieve the goal of carbon neutrality,China’s geosciences and geological technologies can play an important role in solv... In the context of global climate change,geosciences provide an important geological solution to achieve the goal of carbon neutrality,China’s geosciences and geological technologies can play an important role in solving the problem of carbon neutrality.This paper discusses the main problems,opportunities,and challenges that can be solved by the participation of geosciences in carbon neutrality,as well as China’s response to them.The main scientific problems involved and the geological work carried out mainly fall into three categories:(1)Carbon emission reduction technology(natural gas hydrate,geothermal,hot dry rock,nuclear energy,hydropower,wind energy,solar energy,hydrogen energy);(2)carbon sequestration technology(carbon capture and storage,underground space utilization);(3)key minerals needed to support carbon neutralization(raw materials for energy transformation,carbon reduction technology).Therefore,geosciences and geological technologies are needed:First,actively participate in the development of green energy such as natural gas,geothermal energy,hydropower,hot dry rock,and key energy minerals,and develop exploration and exploitation technologies such as geothermal energy and natural gas;the second is to do a good job in geological support for new energy site selection,carry out an in-depth study on geotechnical feasibility and mitigation measures,and form the basis of relevant economic decisions to reduce costs and prevent geological disasters;the third is to develop and coordinate relevant departments of geosciences,organize and carry out strategic research on natural resources,carry out theoretical system research on global climate change and other issues under the guidance of earth system science theory,and coordinate frontier scientific information and advanced technological tools of various disciplines.The goal of carbon neutrality provides new opportunities and challenges for geosciences research.In the future,it is necessary to provide theoretical and technical support from various aspects,enhance the ability of climate adaptation,and support the realization of the goal of carbon peaking and carbon neutrality. 展开更多
关键词 carbon neutrality carbon peaking carbon emissions carbon sequestration Key minerals Renewable energy Climate change GEOSCIENCES Geological technology China
下载PDF
Origin,discovery,exploration and development status and prospect of global natural hydrogen under the background of“carbon neutrality” 被引量:4
18
作者 Qian-ning Tian Shu-qing Yao +2 位作者 Ming-juan Shao Wei Zhang Hai-hua Wang 《China Geology》 CAS 2022年第4期722-733,共12页
Global energy structure is experiencing the third transition from fossil energy to non-fossil energy,to solve future energy problems,cope with climate change,and achieve net-zero emissions targets by 2050.Hydrogen is ... Global energy structure is experiencing the third transition from fossil energy to non-fossil energy,to solve future energy problems,cope with climate change,and achieve net-zero emissions targets by 2050.Hydrogen is considered to be the most potential clean energy in this century under the background of carbon neutrality.At present,the industrial methods for producing hydrogen are mainly by steam-hydrocarbon(such as coal and natural gas)reforming and by electrolysis of water,while the exploration and development of natural hydrogen had just started.According to this literature review:(1)Natural hydrogen can be divided into three categories,including free hydrogen,hydrogen in inclusions and dissolved hydrogen;(2)natural hydrogen could be mainly from abiotic origins such as by deep-seated hydrogen generation,water-rock reaction or water radiolysis;(3)natural hydrogen is widely distributed and presents great potential,and the potential natural hydrogen sources excluding deep source of hydrogen is about(254±91)×10^(9) m^(3)/a according to a latest estimate;(4)at present,natural hydrogen has been mined in Mali,and the exploration and development of natural hydrogen has also been carried out in Australia,Brazil,the United States and some European countries,to find many favorable areas and test some technical methods for natural hydrogen exploration.Natural hydrogen is expected to be an important part of hydrogen energy production in the future energy pattern.Based on a thorough literature review,this study introduced the origin,classification,and global discovery of natural hydrogen,as well as summarized the current global status and discussed the possibility of natural hydrogen exploration and development,aiming to provide reference for the future natural hydrogen exploration and development. 展开更多
关键词 carbon neutrality Energy transition New energy Hydrogen energy Natural hydrogen OCCURRENCE GENESIS RESOURCES Exploration and development Potential
下载PDF
Technology strategies to achieve carbon peak and carbon neutrality for China's metal mines 被引量:3
19
作者 Qifeng Guo Xun Xi +1 位作者 Shangtong Yang Meifeng Cai 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第4期626-634,共9页
Greenhouse gas(GHG)emissions related to human activities have significantly caused climate change since the Industrial Revolution.China aims to achieve its carbon emission peak before 2030 and carbon neutrality before... Greenhouse gas(GHG)emissions related to human activities have significantly caused climate change since the Industrial Revolution.China aims to achieve its carbon emission peak before 2030 and carbon neutrality before 2060.Accordingly,this paper reviews and discusses technical strategies to achieve the“dual carbon”targets in China’s metal mines.First,global carbon emissions and emission intensities from metal mining industries are analyzed.The metal mining status and carbon emissions in China are then examined.Furthermore,advanced technologies for carbon mitigation and carbon sequestration in metal mines are reviewed.Finally,a technical roadmap for achieving carbon neutrality in China’s metal mines is proposed.Findings show that some international mining giants have already achieved their carbon reduction targets and planned to achieve carbon neutrality by 2050.Moreover,improving mining efficiency by developing advanced technologies and replacing fossil fuel with renewable energy are two key approaches in reducing GHG emissions.Green mines can significantly benefit from the carbon neutrality process for metal mines through the carbon absorption of reclamation vegetations.Geothermal energy extraction from operating and abandoned metal mines is a promising technology for providing clean energy and contributing to the carbon neutrality target of China’s metal mines.Carbon sequestration in mine backfills and tailings through mineral carbonation has the potential to permanently and safely store carbon dioxide,which can eventually make the metal mining industry carbon neutral or even carbon negative. 展开更多
关键词 carbon emissions carbon neutrality China’s metal mines deep mining mining efficiency
下载PDF
A sensitivity analysis of factors affecting in geologic CO_(2) storage in the Ordos Basin and its contribution to carbon neutrality 被引量:3
20
作者 Shi-xin Dai Yan-jiao Dong +3 位作者 Feng Wang Zhen-han Xing Pan Hu Fu Yang 《China Geology》 CAS 2022年第3期359-371,共13页
To accelerate the achievement of China’s carbon neutrality goal and to study the factors affecting the geologic CO_(2)storage in the Ordos Basin,China’s National Key R&D Programs propose to select the Chang 6 oi... To accelerate the achievement of China’s carbon neutrality goal and to study the factors affecting the geologic CO_(2)storage in the Ordos Basin,China’s National Key R&D Programs propose to select the Chang 6 oil reservoir of the Yanchang Formation in the Ordos Basin as the target reservoir to conduct the geologic carbon capture and storage(CCS)of 100000 t per year.By applying the basic theories of disciplines such as seepage mechanics,multiphase fluid mechanics,and computational fluid mechanics and quantifying the amounts of CO_(2)captured in gas and dissolved forms,this study investigated the effects of seven factors that influence the CO_(2)storage capacity of reservoirs,namely reservoir porosity,horizontal permeability,temperature,formation stress,the ratio of vertical to horizontal permeability,capillary pressure,and residual gas saturation.The results show that the sensitivity of the factors affecting the gas capture capacity of CO_(2)decreases in the order of formation stress,temperature,residual gas saturation,horizontal permeability,and porosity.Meanwhile,the sensitivity of the factors affecting the dissolution capture capacity of CO_(2)decreases in the order of formation stress,residual gas saturation,temperature,horizontal permeability,and porosity.The sensitivity of the influencing factors can serve as the basis for carrying out a reasonable assessment of sites for future CO_(2)storage areas and for optimizing the design of existing CO_(2)storage areas.The sensitivity analysis of the influencing factors will provide basic data and technical support for implementing geologic CO_(2)storage and will assist in improving geologic CO_(2)storage technologies to achieve China’s carbon neutralization goal. 展开更多
关键词 eologic CO_(2)storage Influencing factors Sensitivity analysis carbon neutrality Oil and gas exploration engineering Ordos Basin China
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部