期刊文献+
共找到833篇文章
< 1 2 42 >
每页显示 20 50 100
Carbon Nitride Quantum Dots:A Novel Fluorescent Probe for Non-Enzymatic Hydrogen Peroxide and Mercury Detection
1
作者 CHEN Lei LI Quan +2 位作者 WANG Xing WANG Wentai WANG Lisha 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1572-1582,共11页
The mercury species in the ocean(MeHg,Hg^(2+))will be enriched in marine organisms and threaten human health through the food chain.While the excessive H_(2)O_(2)in the metabolic process will produce hydroxyl radicals... The mercury species in the ocean(MeHg,Hg^(2+))will be enriched in marine organisms and threaten human health through the food chain.While the excessive H_(2)O_(2)in the metabolic process will produce hydroxyl radicals and accelerate the aging of human cells,causing a series of diseases.Hence,the cost-effective and rapid detection of mercury and H_(2)O_(2)is of urgent requirement and significance.Here,we synthesized emerging graphitic carbon nitride quantum dots(g-CNQDs)with high fluorescence quantum yield(FLQY)of 42.69%via a bottom-up strategy by a facile one-step hydrothermal method.The g-CNQDs can detect the H_(2)O_(2)and Hg^(2+)through the fluorescence quenching effect between g-CNQDs and detected substances.With the presence of KI,g-CNQDs show concentration-dependent fluorescence toward H_(2)O_(2),with a wide detection range of 1–1000μmolL^(-1)and a low detection limit of 0.23μmolL^(-1).The g-CNQDs also show sensitivity toward Hg^(2+)with a detection range of 0–0.1μmolL^(-1)and a detection limit of 0.038μmolL^(-1).This dual-function detection of g-CNQDs has better practical application capability compared to other quantum dot detection.This study may provide a new strategy for g-CNQDs preparation and construct a fluorescence probe that can be used in various systems involving H_(2)O_(2)and Hg^(2+),providing better support for future bifunctional or multifunction studies. 展开更多
关键词 carbon nitride quantum dots hydrogen peroxide Hg2+ fluorescence probe
下载PDF
Energy Transfer Dynamics between Carbon Quantum Dots and Molybdenum Disulfide Revealed by Transient Absorption Spectroscopy
2
作者 Ruixiang Wu Xin Liu +4 位作者 Xiaoshuai Wang Jingjing Luo Bin Li Shengzhi Wang Xiangyang Miao 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2023年第5期503-508,I0001,共7页
Zero-dimensional environmentally friendly carbon quantum dots(CQDs)combined with two-di-mensional materials have a wide range of applications in optoelec-tronic devices.We combined steady-state and transient absorp-ti... Zero-dimensional environmentally friendly carbon quantum dots(CQDs)combined with two-di-mensional materials have a wide range of applications in optoelec-tronic devices.We combined steady-state and transient absorp-tion spectroscopies to study the energy transfer dynamics between CQDs and molybdenum disulfide(MoS_(2)).Transient absorption plots showed photoinduced absorption and stimulated emission features,which involved the intrinsic and defect states of CQDs.Adding MoS_(2)to CQDs solution,the lowest unoccupied molecular orbital of CQDs transferred energy to MoS_(2),which quenched the intrinsic emission at 390 nm.With addition of MoS_(2),CQD-MoS_(2)composites quenched defect emission at 490 nm and upward absorption,which originated from another energy transfer from the defect state.Two energy transfer paths between CQDs and MoS_(2)were efficiently manipulated by changing the concentration of MoS_(2),which laid a foundation for improving device performance. 展开更多
关键词 Energy transfer Transient absorption spectroscopy carbon quantum dot Molybdenum disulfide
下载PDF
Graphitic Carbon Quantum Dots Modified Nickel Cobalt Sulfide as Cathode Materials for Alkaline Aqueous Batteries 被引量:10
3
作者 Yirong Zhu Jingying Li +6 位作者 Xiaoru Yun Ganggang Zhao Peng Ge Guoqiang Zou Yong Liu Hongshuai Hou Xiaobo Ji 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第2期1-18,共18页
Carbon quantum dots(CQDs)as a new class of emerging materials have gradually drawn researchers’concern in recent years.In this work,the graphitic CQDs are prepared through a scalable approach,achieving a high yield w... Carbon quantum dots(CQDs)as a new class of emerging materials have gradually drawn researchers’concern in recent years.In this work,the graphitic CQDs are prepared through a scalable approach,achieving a high yield with more than 50%.The obtained CQDs are further used as structure-directing and conductive agents to synthesize novel N,S-CQDs/NiCo2S4 composite cathode materials,manifesting the enhanced electrochemical properties resulted from the synergistic effect of highly conductive N,S-codoped CQDs offering fast electronic transport and unique micro-/nanostructured NiCo2S4 microspheres with Faradaic redox characteristic contributing large capacity.Moreover,the nitrogen-doped reduced graphene oxide(N-rGO)/Fe2O3 composite anode materials exhibit ultrahigh specific capacity as well as significantly improved rate property and cycle performance originating from the high-capacity prism-like Fe2O3 hexahedrons tightly wrapped by highly conductive N-rGO.A novel alkaline aqueous battery assembled by these materials displays a specific energy(50.2 Wh kg^−1),ultrahigh specific power(9.7 kW kg^−1)and excellent cycling performance with 91.5%of capacity retention at 3 A g^−1 for 5000 cycles.The present research offers a valuable guidance for the exploitation of advanced energy storage devices by the rational design and selection of battery/capacitive composite materials. 展开更多
关键词 Energy storage Alkaline aqueous batteries carbon quantum dot Nickel cobalt sulfide
下载PDF
Carbon quantum dots for advanced electrocatalysis 被引量:7
4
作者 Lin Tian Zhao Li +3 位作者 Peng Wang Xiuhui Zhai Xiang Wang Tongxiang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期279-294,共16页
Zero-dimensional(0D)carbon quantum dots(CQDs),as a nanocarbon material in the carbon family,have garnered increasing attention in recent years due to their outstanding features of low cost,nontoxicity,large surface ar... Zero-dimensional(0D)carbon quantum dots(CQDs),as a nanocarbon material in the carbon family,have garnered increasing attention in recent years due to their outstanding features of low cost,nontoxicity,large surface area,high electrical conductivity,and rich surface functional groups.By virtue of their rapid electron transfer and large surface area,CQDs also emerge as promising functional materials for the applications in energy-conversion sectors through electrocatalysis.Besides,the rich functional groups on the surface of CQDs offer abundant anchoring sites and active sites for the engineering of multicomponent and high-performance composite materials.More importantly,the heteroatom in the CQDs could effectively tailor the charge distribution to promote the electron transfer via internal interactions,which is crucial to the enhancement of electrocatalytic performance.Herein,an overview about recent progress in preparing CQDs-based composites and employing them as promising electrode materials to promote the catalytic activity and stability for electrocatalysis is provided.The introduced CQDs could enhance the conductivity,modify the morphology and crystal phase,optimize the electronic structure,and provide more active centers and defect sites of composites.After establishing a deep understanding of the relationship between CQDs and electrocatalytic performances,the issues and challenges for the development of CQDs-based composites are discussed. 展开更多
关键词 carbon quantum dots CONDUCTIVITY Electron transfer ELECTROCATALYSIS
下载PDF
Multifarious roles of carbon quantum dots in heterogeneous photocatalysis 被引量:3
5
作者 Kang-Qiang Lu Quan Quan +1 位作者 Nan Zhang Yi-Jun Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期927-935,共9页
As a new member of carbon material family, carbon quantum dots(CQDs) have attracted tremendous attentions for their potentials in the heterogeneous photocatalysis applications. Due to the unique microstructure and opt... As a new member of carbon material family, carbon quantum dots(CQDs) have attracted tremendous attentions for their potentials in the heterogeneous photocatalysis applications. Due to the unique microstructure and optical properties, the roles of CQDs played in the CQDs-based photocatalytic systems have been found to be diverse with the continuous researches in this regard. Herein, we provide a concise minireview to elaborate the multifarious roles of CQDs in photocatalysis, including photoelectron mediator and acceptor, photosensitizer, photocatalyst, reducing agent for metal salt, enhancing adsorption capacity and spectral converter. In addition, the perspectives on future research trends and challenges are proposed, which are anticipated to stimulate further research into this promising field on designing a variety of efficient CQDs-based photocatalysts for solar energy conversion. 展开更多
关键词 carbon quantum dots Multifarious roles Photocatalysis applications Solar energy conversion
下载PDF
Curtailing Carbon Usage with Addition of Functionalized NiFe2O4 Quantum Dots:Toward More Practical S Cathodes for Li-S Cells 被引量:3
6
作者 Ning Li Ting Meng +5 位作者 Lai Ma Han Zhang JiaJia Yao Maowen Xu Chang Ming Li Jian Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第11期1-12,共12页
Smartcombination of manifold carbonaceous materials with admirable functionalities(like full of pores/functional groups,high specific surface area) is still a mainstream/preferential way to address knotty issues of po... Smartcombination of manifold carbonaceous materials with admirable functionalities(like full of pores/functional groups,high specific surface area) is still a mainstream/preferential way to address knotty issues of polysulfides dissolution/shuttling and poor electrical conductivity for S-based cathodes.However,extensive use of conductive carbon fillers in cell designs/technology would induce electrolytic overconsumption and thereby shelve high-energy-density promise of Li-S cells.To cut down carbon usage,we propose the incorporation of multi-functionalized NiFe2O4 quantum dots(QDs) as affordable additive substitutes.The total carbon content can be greatly curtailed from 26%(in traditional S/C cathodes) to a low/commercial mass ratio(~5%).Particularly,note that NiFe2O4 QDs additives own superb chemisorption interactions with soluble Li2Sn molecules and proper catalytic features facilitating polysulfide phase conversions and can also strengthen charge-transfer capability/redox kinetics of overall cathode systems.Benefiting from these intrinsic properties,such hybrid cathodes demonstrate prominent rate behaviors(decent capacity retention with ~526 mAh g^-1 even at 5 A g^-1) and stable cyclic performance in LiNO3-free electrolytes(only ~0.08% capacity decay per cycle in 500 cycles at 0.2 A g^-1).This work may arouse tremendous research interest in seeking other alternative QDs and offer an economical/more applicable methodology to construct low-carbon-content electrodes for practical usage. 展开更多
关键词 carbon usage reduction NiFe_2O_4 quantum dots Additive substitute Practical S cathode Li-S cells
下载PDF
Alcohol Solvent Effect on Fluorescence Properties in the Solvothermal Synthesis of Carbon Quantum Dots 被引量:1
7
作者 邓亚峰 周奕华 +2 位作者 YE Shuangli QIAN Jun CAO Sheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第1期23-27,共5页
Highly monodisperse carbon quantum dots(CQDs)were synthesized by a solvothermal method using L-ascorbic acid as carbon source and different simple alcohols(methanol,ethanol,ethylene glycol,and isopropanol)as reaction ... Highly monodisperse carbon quantum dots(CQDs)were synthesized by a solvothermal method using L-ascorbic acid as carbon source and different simple alcohols(methanol,ethanol,ethylene glycol,and isopropanol)as reaction solvents at 180℃for 4 hours.The performance of CQDs was characterized by transmission electron microscope(TEM),Fourier infrared spectrometer(FTIR),UV-visible spectrophotometer,and fluorescence spectrophotometer.The results show that the prepared CQDs are wavelength-dependent,and have good hydrophilicity and similar surface compositions.However,there are more carbon and oxygen-containing functional groups on the surface of CQDs prepared with ethanol(CQDs-ET),and the type and number of functional groups will directly affect the fluorescence emission of CQDs.Also,it is found that the luminescence mechanisms of CQDs prepared by this solvothermal method are mainly based on the defect state of the oxygen group surface.And alcohol solvents do not directly participate in the formation of carbon nuclei during the reaction process,but it will affect the number and type of surface groups.Therefore,the influence of surface groups on the CQDs performance is greater than that of carbon nuclei in this experiment. 展开更多
关键词 carbon quantum dots solvothermal method reaction solvent luminescence mechanisms
原文传递
Surface defect-rich ceria quantum dots anchored on sulfur-doped carbon nitride nanotubes with enhanced charge separation for solar hydrogen production 被引量:1
8
作者 Mengru Li Changfeng Chen +3 位作者 Liping Xu Yushuai Jia Yan Liu Xin Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期51-59,I0003,共10页
Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were ... Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were synthesized via a thermal polycondensation coupled in situ depositionprecipitation method without use of template or surfactant.The structure and morphology studies indicate that ultrafine CeO2 QDs are well distributed inside and outside of SCN NTs offering highly dispersed active sites and a large contact interface between two components.This leads to the promoted formation of rich Ce^(3+) ion and oxygen vacancies as confirmed by XPS.The photocatalytic performance can be facilely modulated by the content of CeO2 QDs introduced in SCN matrix while bare CeO2 does not show activity of hydrogen production.The optimal catalyst with 10% of CeO2 loading yields a hydrogen evolution rate of 2923.8 μmol h-1 g-1 under visible light,remarkably higher than that of bare SCN and their physical mixtures.Further studies reveal that the abundant surface defects and the created 0 D/1 D junctions play a critical role in improving the separation and transfer of charge carriers,leading to superior solar hydrogen production and good stability. 展开更多
关键词 Photocatalytic hydrogen evolution Ceria quantum dots Sulfur-doped carbon nitride nanotubes Surface defects Charge separation
下载PDF
Photocatalytic degradation of organic pollutants using green oil palm frond-derived carbon quantum dots/titanium dioxide as multifunctional photocatalysts under visible light radiation 被引量:1
9
作者 Zeng Wei Heng Woon Chan Chong +2 位作者 Yean Ling Pang Lan Ching Sim Chai Hoon Koo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第11期21-34,共14页
The present work suggested the use of waste oil palm frond as an alternative precursor for nitrogendoped carbon quantum dots(NCQDs)and proposed a straightforward in-situ hydrothermal method for the preparation of NCQD... The present work suggested the use of waste oil palm frond as an alternative precursor for nitrogendoped carbon quantum dots(NCQDs)and proposed a straightforward in-situ hydrothermal method for the preparation of NCQDs/TiO_(2)nanocomposites.The elemental composition,morphological,structural and optical characteristics of NCQDs/TiO_(2)nanocomposites have been comprehensively investigated.The successful grafting of NCQDs on TiO_(2)matrix was confirmed by the formation of Ti AOAC bond and the electronic coupling between theπ-states of NCQDs and the conduction band of TiO_(2).For the first time,the oil palm frond-derived NCQDs/TiO_(2)was adopted in the photodegradation of methylene blue(MB)under visible-light irradiation.As a result,the photocatalytic efficiency of NCQDs/TiO_(2)nanocomposites(86.16%)was 2.85 times higher than its counterpart TiO_(2)(30.18%).The enhanced performance of nanocomposites was attributed to the pivotal roles of NCQDs serving as electron mediator and visiblelight harvester.Besides,the optimal NCQDs loading was determined at 4 ml while the removal efficiency of NCQDs/TiO_(2)-4 was the highest at a catalyst dosage of 1 g.L^(-1)under alkaline condition.This research work is important as it proposed a new insight to the preparation of biomass-based NCQDs/TiO_(2)using a facile synthetic method,which offers a green and sustainable water remediation technology. 展开更多
关键词 Oil palm frond biomass N-doped carbon quantum dots Titanium-dioxide In-situ hydrothermal Visible light photocatalysis Methylene blue
下载PDF
Graphene Quantum Dots Derived from Carbon Fibers for Oxidation of Dopamine 被引量:1
10
作者 陈爱兵 ZHAO Chaochao +1 位作者 YU Yifeng YANG Jinghe 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第6期1294-1297,共4页
We demonstrated a facile method to prepare photoluminescent graphene quantum dots using commercial polyacrylonitrile(PAN) based carbon fibers(CFs) as the raw material by facile chemical oxidation and exfoliation metho... We demonstrated a facile method to prepare photoluminescent graphene quantum dots using commercial polyacrylonitrile(PAN) based carbon fibers(CFs) as the raw material by facile chemical oxidation and exfoliation method. The as-prepared GQDs with uniform size exhibit an excitation-independent photoluminescence behavior, which is similar to other semiconductor quantum dots. Moreover, when acting as catalyst the uniform GQDs have better activity for electrochemical oxidation of dopamine(DA) than graphene oxides(GOs). The square wave voltammogram(SWV) peak values of GQDs are in good correspondence with DA concentrations and can act as a sensor of DA. 展开更多
关键词 半导体量子点 电化学氧化 多巴胺 碳纤维 石墨 发光行为 方波伏安 CFS
原文传递
Amperometric Hydrogen Peroxide Biosensor Based on Multiwall Carbon Nanotubes and Cadmium Sulfide Quantum Dots 被引量:1
11
作者 ZHANG Jin-lei TAN Xue-cai +4 位作者 ZHAO Dan-dan TAN Sheng-wei HUANG Zeng-wei MI Yan HUANG Zai-yin 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2010年第4期541-545,共5页
A novel third-generation hydrogen peroxide(H_2O_2) biosensor(Hb/CdS/MWNTs/GCE) was fabricated through hemoglobin(Hb) adsorbed onto the mercaptoacetic acid modified CdS QDs/carboxyl multiwall carbon nanotubes'(MWNT... A novel third-generation hydrogen peroxide(H_2O_2) biosensor(Hb/CdS/MWNTs/GCE) was fabricated through hemoglobin(Hb) adsorbed onto the mercaptoacetic acid modified CdS QDs/carboxyl multiwall carbon nanotubes'(MWNTs) films.Cyclic voltammogram of Hb/CdS/MWNTs/GCE showed a pair of well-defined and quasi-reversible redox peaks with a formal potential(E^0) of-0.230 V(vs.Ag/AgCl) in 0.1 mol/L pH=8.0 phosphate buffer solution(PBS),which was the characteristic of the Hb heme Fe(Ⅲ)/Fe(Ⅱ) redox couple.The biosensor shows an excellent electrocatalytic activity to the reduction of H_2O_2.The response time of the designed biosensor to H_2O_2 at a potential of -0.30 V was less than 2 s and linear relationships were obtained in the concentration ranges of 2.0×10^(-6)—2.7×10^(-3) mol/L and 2.7×10^(-3)—7.7×10^(-3) mol/L with a detection limit of 3.0×10^(-7)mol/L(S/N=3).The apparent Michaelis-Menten constant K_m was estimated to be 1.324 mmol/L that illustrated the excellent biological activity of the fixed Hb. 展开更多
关键词 过氧化氢生物传感器 多壁碳纳米管 硫化镉 量子点 血红蛋白 安培 磷酸盐缓冲液 H2O2
下载PDF
Synthesis of Fluorescent Carbon Quantum Dots and Their Application in the Plant Cell Imaging
12
作者 丁莉芸 WANG Xingtui +2 位作者 李俊丽 HUANG Jun LI Zhijie 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第6期1546-1550,共5页
Carbon quantum dots(CQDs) exhibit tremendous advantages for plant growth study due to its strong fluorescence and good biocompatibility. The fluorescent CQDs were synthesized by the onestep microwave method with the r... Carbon quantum dots(CQDs) exhibit tremendous advantages for plant growth study due to its strong fluorescence and good biocompatibility. The fluorescent CQDs were synthesized by the onestep microwave method with the raw materials of citric acid(CA) and urea(UR), and expressed a unique green fluorescence with the optimal excitation wavelength of over 400 nm through adjusting the doping of N elements. It is demonstrated that CQDs can act as deliver media in plant and fluorescent probes for plant cell imaging through directly cultivated in the seedlings of melon and wheat, respectively. Based on the effects of the fluorescent CQDs on plants growth, we can further study the mechanisms of the ions transport in plants. 展开更多
关键词 carbon quantum dots plant cell IMAGING MICROWAVE method
原文传递
Synthesis of Humin-based Carbon Quantum Dots and Luminescent Properties 被引量:1
13
作者 YanRu Zhang Ning Gao +2 位作者 BingXin Wang Feng Peng YongMing Fan 《Paper And Biomaterials》 2018年第2期8-15,共8页
The unique properties of carbon quantum dots(CQDs) make them promising materials in many fields. Herein, we present a facile method for the preparation of photo-luminescent CQDs using humins as the carbon precursor fo... The unique properties of carbon quantum dots(CQDs) make them promising materials in many fields. Herein, we present a facile method for the preparation of photo-luminescent CQDs using humins as the carbon precursor for the purpose of providing a high value-added solution for this "biomass conversion process waste". The structure of the CQDs was analyzed, and the effects of reaction temperature and time on the CQDs' fluorescence were investigated. The results showed that humins were effectively carbonized during the reaction. The fluorescence intensity of humin-based CQDs initially increased with reaction temperature and time, and subsequently decreased beyond 200℃ and 4 h. Polyaromatic structures and hydrophilic groups such as O—H, C—O, —COOH and C==O groups exist in the CQDs. The huminbased CQDs have the dimension of 3~7 nm with an average size of about 5.5 nm. The highest emission intensity of blue/cyan fluorescence light at 440 nm is achieved on the excitation with UV light at the wavelength of 330 nm. 展开更多
关键词 碳量子点 材料学 科学研究 技术创新
下载PDF
Highly conjugated water soluble CdSe quantum dots to multiwalled carbon nanotubes
14
作者 Gui Zheng Zou 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第3期356-357,共2页
Highly conjugated multiwalled carbon nanotube-quantum dot heterojunctions were synthesized by ethylene carbodiimide coupling procedure.The functional multiwalled carbon nanotube with carboxylic groups on sidewall coul... Highly conjugated multiwalled carbon nanotube-quantum dot heterojunctions were synthesized by ethylene carbodiimide coupling procedure.The functional multiwalled carbon nanotube with carboxylic groups on sidewall could react with the amino group of L-cysteine capped CdSe quantum dots and then resulted in nanotube-quantum dot heterojunctions.Scanning electron microscopy was used to characterize the heterojunctions. 展开更多
关键词 多壁碳纳米管 CDSE 量子点 水溶性 扫描电子显微镜 异质结 半胱氨酸 氨基酸
下载PDF
Preparation of a Novel Green Fluorescent Carbon Quantum Dots and Application in Fe^(3+)-Specific Detection in Biological System
15
作者 Xianfen Zhang Wenxian Wang +4 位作者 Lijiao Guan Huajie Chen Dai Li Lipeng Zhang Saipeng Huang 《Journal of Analysis and Testing》 EI CSCD 2024年第1期40-51,共12页
Trace ferric ion(Fe^(3+))detection has attracted increasing attention as an essential and indispensable role in many physiological and pathological research.The green-emitting carbon quantum dots(Green-CQDs)were obtai... Trace ferric ion(Fe^(3+))detection has attracted increasing attention as an essential and indispensable role in many physiological and pathological research.The green-emitting carbon quantum dots(Green-CQDs)were obtained through a green and facile one-step hydrothermal method for the specific recognition and trace detection of Fe^(3+)in this paper.The optimal excitation and emission wavelengths of the CQDs were 395 nm and 490 nm,respectively.The stokes shift was up to 95 nm,which can effectively reduce the background fluorescence interference.In addition,it also exhibited good water solubility,stability,and high biocompatibility.The fluorescence intensity of Green-CQDs was linearly related to the concentration of Fe^(3+)(range of 0-80μmol/L),and the detection limit was as low as 59 nmol/L.These good properties were favorable and successful for Fe^(3+)detection in tap water,human serum samples and living cells.In addition,a fluorescence visual test paper(FP@CQDs)was prepared utilizing filter paper as carrier,which can quickly identify Fe^(3+)in real time,and is suitable for the visualization analysis of Fe^(3+)in environment.As an efficient nanoprobe,the Green-CQDs held great promise and bright prospects in practical application in prevention and early clinical diagnosis of Fe^(3+)-associated diseases. 展开更多
关键词 carbon quantum dots FLUORESCENT HYDROTHERMAL Fe^(3+)-specific detection Cell imaging
原文传递
新型环保阻垢剂L-CCQDs的制备及性能研究
16
作者 李辉 郭敏 +1 位作者 孙征楠 荆国林 《现代化工》 CAS CSCD 北大核心 2023年第9期114-119,共6页
以无水柠檬酸、L-抗坏血酸为主要原料,通过熔融缩聚法合成了一种CQDs衍生物L-CCQDs,并通过红外光谱分析仪等手段对其进行表征,得到了与理论相符合的结果。将L-CCQDs在0~80℃条件下进行阻垢静态测试,结果表明,在极少量L-CCQDs的加入条件... 以无水柠檬酸、L-抗坏血酸为主要原料,通过熔融缩聚法合成了一种CQDs衍生物L-CCQDs,并通过红外光谱分析仪等手段对其进行表征,得到了与理论相符合的结果。将L-CCQDs在0~80℃条件下进行阻垢静态测试,结果表明,在极少量L-CCQDs的加入条件下,阻硫酸钙和阻碳酸钙垢的阻垢率均可达到100%,与单一的无水柠檬酸相比得到明显的改善。通过SEM等方法对L-CCQDs的阻垢机制进行研究,发现随着L-CCQDs加入量的增大,碳酸钙垢的晶型逐渐由方解石向尺寸更小的霰石结构发展,证明L-CCQDs对钙垢生长有显著的抑制作用。 展开更多
关键词 无水柠檬酸 L-抗坏血酸 碳量子点 阻垢
原文传递
Na_(2)MnPO_(4)F/Ti_(3)C_(2)-CQDs对Li/Na储能性能的密度泛函理论研究
17
作者 王绍聪 李伟 +1 位作者 周烽海 刘峥 《电池》 CAS 北大核心 2023年第6期624-628,共5页
Na_(2)MnPO_(4)F作为锂/钠混合离子电池的电极材料,具有低成本、无毒、高电压和价态丰富等特点,但电子电导率低、离子扩散速率慢、锰的溶解及Jahn-Teller效应,限制了其应用。基于密度泛函理论下的第一性原理,以Na_(2)MnPO_(4)F/Ti_(3)C_... Na_(2)MnPO_(4)F作为锂/钠混合离子电池的电极材料,具有低成本、无毒、高电压和价态丰富等特点,但电子电导率低、离子扩散速率慢、锰的溶解及Jahn-Teller效应,限制了其应用。基于密度泛函理论下的第一性原理,以Na_(2)MnPO_(4)F/Ti_(3)C_(2)和Na_(2)MnPO_(4)F/Ti_(3)C_(2)-碳量子点(CQDs)复合材料为研究对象,构建Na2MnPO4F、NaLiMnPO_(4)F、Na_(2)MnPO_(4)F/Ti_(3)C_(2)、NaLiMnPO_(4)F/Ti_(3)C_(2)、Na_(2)MnPO4F/Ti_(3)C_(2)-CQDs和NaLiMnPO_(4)F/Ti_(3)C_(2)-CQDs等6种结构模型,计算能带结构、结合能、态密度及电荷局域密度,分析复合前后材料的电子结构和性能变化。Li原子的引入,使Na_(2)MnPO_(4)F与Ti_(3)C_(2)和Ti_(3)C_(2)-CQDs的结合能分别增大1.1397 J/m^(2)和0.7866 J/m^(2),复合Ti_(3)C_(2)和Ti_(3)C_(2)-CQDs能改善Na_(2)MnPO_(4)F的导电性,且Ti_(3)C_(2)-CQDs改善效果更佳。 展开更多
关键词 Na_(2)MnPO_(4)F Ti_(3)C_(2)-碳量子点(cqds)复合材料 第一性原理 密度泛函理论(DFT)
下载PDF
LaFeO_(3)/CQDs-g-C_(3)N_(x)催化剂的光催化性能研究
18
作者 王祎迪 孙有为 +4 位作者 周峰 马会霞 王彦娟 胡绍争 张健 《燃料化学学报(中英文)》 EI CAS CSCD 北大核心 2023年第2期215-224,共10页
本实验制备了一种Z型含氮缺陷的石墨相氮化碳(LaFeO_(3)/CQDs-g-C_(3)N_(x))复合光催化剂。利用X射线衍射(XRD)、紫外-可见光漫反射(UV-Vis DRS)、光致发光光谱(PL)、扫描电镜(SEM)、透射电镜(TEM)以及X射线光电子能谱(XPS)等手段对催... 本实验制备了一种Z型含氮缺陷的石墨相氮化碳(LaFeO_(3)/CQDs-g-C_(3)N_(x))复合光催化剂。利用X射线衍射(XRD)、紫外-可见光漫反射(UV-Vis DRS)、光致发光光谱(PL)、扫描电镜(SEM)、透射电镜(TEM)以及X射线光电子能谱(XPS)等手段对催化剂进行了表征。结果表明,氮缺陷和CQDs的引入能增强光生载流子的迁移效率。LaFeO_(3)/CQDs-g-C_(3)N_(x)复合材料对罗丹明B(RhB)的光催化降解率是纯g-C_(3)N_(4)的3.98倍,并具有良好的光催化稳定性。同时对抗生素和其他有机污染物也表现出良好的降解能力。 展开更多
关键词 Z型异质结 氮缺陷 碳量子点 光催化
下载PDF
红外成像研究PLLA/N-CQDs复合薄膜的结晶性能
19
作者 董锡鹏 齐红霞 +2 位作者 翟子卓 康羽 张普敦 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2023年第S01期19-20,共2页
将水热法制得的氮掺杂碳量子点(N-CQDs)加入聚乳酸(PLLA)基质中,以溶剂浇铸法制备了PLLA/N-CQDs复合薄膜,并通过红外成像分析了N-CQDs的加入对PLLA结晶性能的影响。结果显示,加入N-CQDs可以显著提高PLLA的结晶性能。
关键词 红外成像 聚乳酸 氮掺杂碳量子点 结晶
下载PDF
光驱动CQDs/PCN催化活化过硫酸盐降解双酚A 被引量:1
20
作者 郭瑞 刘子昂 +3 位作者 高艺芳 焦媛 刘晓娜 钱天伟 《中国环境科学》 EI CAS CSCD 北大核心 2023年第1期164-173,共10页
以柠檬酸和尿素为原料制备了碳量子点(CQDs),并采用热聚合法将CQDs分散在聚合物氮化碳(PCN)纳米片的表面(CQDs/PCN).通过SEM、TEM、XRD等测试技术对所制备的材料进行表征,证明了CQDs成功负载在PCN上.在模拟太阳光的条件下,考察了CQDs/PC... 以柠檬酸和尿素为原料制备了碳量子点(CQDs),并采用热聚合法将CQDs分散在聚合物氮化碳(PCN)纳米片的表面(CQDs/PCN).通过SEM、TEM、XRD等测试技术对所制备的材料进行表征,证明了CQDs成功负载在PCN上.在模拟太阳光的条件下,考察了CQDs/PCN光催化活化过硫酸盐(PDS)对双酚A(BPA)的光催化性能.结果表明BPA在10min时降解率达到99.99%,且重复使用4次后仍能去除85%以上的BPA,说明该材料具有良好的重复性与稳定性.自由基猝灭实验表明CQDs/PCN-PDS光催化过程主要通过超氧自由基(·O_(2)^(-))、单线态氧(^(1)O_(2))和空穴(h^(+))的作用降解BPA,推测了CQDs/PCN-PDS光催化去除BPA可能的反应机理.此外,通过分析光催化氧化中间产物,提出了BPA可能的降解路径.本研究为BPA的快速、高效降解提供了可能性,也为BPA降解提供了一种新的思路. 展开更多
关键词 光催化 过硫酸盐 聚合物氮化碳 碳量子点 双酚A
下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部