期刊文献+
共找到18,956篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of nitrogen deposition on the carbon budget and water stress in Central Asia under climate change
1
作者 HAN Qifei XU Wei LI Chaofan 《Journal of Arid Land》 SCIE CSCD 2024年第8期1118-1129,共12页
Atmospheric deposition of nitrogen(N)plays a significant role in shaping the structure and functioning of various terrestrial ecosystems worldwide.However,the magnitude of N deposition on grassland ecosystems in Centr... Atmospheric deposition of nitrogen(N)plays a significant role in shaping the structure and functioning of various terrestrial ecosystems worldwide.However,the magnitude of N deposition on grassland ecosystems in Central Asia still remains highly uncertain.In this study,a multi-data approach was adopted to analyze the distribution and amplitude of N deposition effects in Central Asia from 1979 to 2014 using a process-based denitrification decomposition(DNDC)model.Results showed that total vegetation carbon(C)in Central Asia was 0.35(±0.09)Pg C/a and the averaged water stress index(WSI)was 0.20(±0.02)for the whole area.Increasing N deposition led to an increase in the vegetation C of 65.56(±83.03)Tg C and slightly decreased water stress in Central Asia.Findings of this study will expand both our understanding and predictive capacity of C characteristics under future increases in N deposition,and also serve as a valuable reference for decision-making regarding water resources management and climate change mitigation in arid and semi-arid areas globally. 展开更多
关键词 carbon dynamics climate change grassland ecosystems nitrogen deposition water stress index
下载PDF
Microfluidic-oriented synthesis of enriched iridium nanodots/carbon architecture for robust electrocatalytic nitrogen fixation 被引量:1
2
作者 Hengyuan Liu Xingjiang Wu +2 位作者 Yuhao Geng Xin Li Jianhong Xu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期544-555,共12页
Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-... Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field. 展开更多
关键词 Iridium nanodots carbon Microfluidic technology Efficient synthesis Electrocatalytic nitrogen fixation
下载PDF
A study on the simulation of carbon and water fluxes of Dangxiong alpine meadow and its response to climate change 被引量:1
3
作者 Lingyun He Lei Zhong +3 位作者 Yaoming Ma Yuting Qi Jie Liu Peizhen Li 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期22-27,共6页
The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of th... The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of the Tibetan Plateau,is a typical example.To understand the carbon and water fluxes,water use efficiency(WUE),and their responses to future climate change for the alpine meadow ecosystem in the Dangxiong area,two parameter estimation methods,the Model-independent Parameter Estimation(PEST)and the Dynamic Dimensions Search(DDS),were used to optimize the Biome-BGC model.Then,the gross primary productivity(GPP)and evapotranspiration(ET)were simulated.The results show that the DDS parameter calibration method has a better performance.The annual GPP and ET show an increasing trend,while the WUE shows a decreasing trend.Meanwhile,ET and GPP reach their peaks in July and August,respectively,and WUE shows a“dual-peak”pattern,reaching peaks in May and November.Furthermore,according to the simulation results for the next nearly 100 years,the ensemble average GPP and ET exhibit a significant increasing trend,and the growth rate under the SSP5–8.5 scenario is greater than that under the SSP2–4.5 scenario.WUE shows an increasing trend under the SSP2–4.5 scenario and a significant increasing trend under the SSP5–8.5 scenario.This study has important scientific significance for carbon and water cycle prediction and vegetation ecological protection on the Tibetan Plateau. 展开更多
关键词 carbon and water flux water use efficiency Alpine meadow Biome-BGC model Climate change
下载PDF
Water and nitrogen footprint assessment of integrated agronomic practice management in a summer maize cropping system
4
作者 Ningning Yu Bingshuo Wang +3 位作者 Baizhao Ren Bin Zhao Peng Liu Jiwang Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3610-3621,共12页
The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two ... The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two years(2019 and 2020)compared three integrated agronomic practice management(IAPM)systems:An improved management system(T2),a high-yield production system(T3),and an integrated soil-crop management system(ISCM)using a local smallholder farmer’s practice system(T1)as control,to investigate the responses of WF,Nr losses,water use efficiency(WUE),and nitrogen use efficiency(NUE)to IAPM.The results showed that IAPM optimized water distribution and promoted water use by summer maize.The evapotranspiration over the whole maize growth period of IAPM increased,but yield increased more,leading to a significant increase in WUE.The WUE of the T2,T3,and ISCM treatments was significantly greater than in the T1 treatment,in 2019 and 2020respectively,by 19.8-21.5,31.8-40.6,and 34.4-44.6%.The lowest WF was found in the ISCM treatment,which was 31.0%lower than that of the T1 treatment.In addition,the ISCM treatment optimized soil total nitrogen(TN)distribution and significantly increased TN in the cultivated layer.Excessive nitrogen fertilizer was applied in treatment T3,producing the highest maize yield,and resulting in the highest Nr losses.In contrast,the ISCM treatment used a reduced nitrogen fertilizer rate,sacrificing grain yield partly,which reduced Nr losses and eventually led to a significant increase in nitrogen use efficiency and nitrogen recovery.The Nr level in the ISCM treatment was34.8%lower than in the T1 treatment while NUE was significantly higher than in the T1 treatment by 56.8-63.1%in2019 and 2020,respectively.Considering yield,WUE,NUE,WF,and NF together,ISCM should be used as a more sustainable and clean system for sustainable production of summer maize. 展开更多
关键词 integrated agronomic practice management water footprints nitrogen footprints water use efficiency nitrogen use efficiency yield
下载PDF
Regulation effects of water and nitrogen on yield,water,and nitrogen use efficiency of wolfberry
5
作者 GAO Yalin QI Guangping +7 位作者 MA Yanlin YIN Minhua WANG Jinghai WANG Chen TIAN Rongrong XIAO Feng LU Qiang WANG Jianjun 《Journal of Arid Land》 SCIE CSCD 2024年第1期29-45,共17页
Wolfberry(Lycium barbarum L.)is important for health care and ecological protection.However,it faces problems of low productivity and resource utilization during planting.Exploring reasonable models for water and nitr... Wolfberry(Lycium barbarum L.)is important for health care and ecological protection.However,it faces problems of low productivity and resource utilization during planting.Exploring reasonable models for water and nitrogen management is important for solving these problems.Based on field trials in 2021 and 2022,this study analyzed the effects of controlling soil water and nitrogen application levels on wolfberry height,stem diameter,crown width,yield,and water(WUE)and nitrogen use efficiency(NUE).The upper and lower limits of soil water were controlled by the percentage of soil water content to field water capacity(θ_(f)),and four water levels,i.e.,adequate irrigation(W0,75%-85%θ_(f)),mild water deficit(W1,65%-75%θ_(f)),moderate water deficit(W2,55%-65%θ_(f)),and severe water deficit(W3,45%-55%θ_(f))were used,and three nitrogen application levels,i.e.,no nitrogen(N0,0 kg/hm^(2)),low nitrogen(N1,150 kg/hm^(2)),medium nitrogen(N2,300 kg/hm^(2)),and high nitrogen(N3,450 kg/hm^(2))were implied.The results showed that irrigation and nitrogen application significantly affected plant height,stem diameter,and crown width of wolfberry at different growth stages(P<0.01),and their maximum values were observed in W1N2,W0N2,and W1N3 treatments.Dry weight per plant and yield of wolfberry first increased and then decreased with increasing nitrogen application under the same water treatment.Dry weight per hundred grains and dry weight percentage increased with increasing nitrogen application under W0 treatment.However,under other water treatments,the values first increased and then decreased with increasing nitrogen application.Yield and its component of wolfberry first increased and then decreased as water deficit increased under the same nitrogen treatment.Irrigation water use efficiency(IWUE,8.46 kg/(hm^(2)·mm)),WUE(6.83 kg/(hm^(2)·mm)),partial factor productivity of nitrogen(PFPN,2.56 kg/kg),and NUE(14.29 kg/kg)reached their highest values in W2N2,W1N2,W1N2,and W1N1 treatments.Results of principal component analysis(PCA)showed that yield,WUE,and NUE were better in W1N2 treatment,making it a suitable water and nitrogen management mode for the irrigation area of the Yellow River in the Gansu Province,China and similar planting areas. 展开更多
关键词 water deficit growth characteristics YIELD water and nitrogen use efficiency principal component analysis
下载PDF
Effects of thinning and understory removal on water use efficiency of Pinus massoniana:evidence from photosynthetic capacity and stable carbon isotope analyses
6
作者 Ting Wang Qing Xu +4 位作者 Beibei Zhang Deqiang Gao Ying Zhang Jing Jiang Haijun Zuo 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期42-53,共12页
Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and... Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and its key controlling processes are not well understood,which limits our comprehension of the physiological mechanisms of various management practices.In this study,four forest management measures(no thinning:NT;understory removal:UR;light thinning:LT;and heavy thinning:HT)were carried out in Pinus massoniana plantations in a subtropical region of China.Photosynthetic capacity and needle stable carbon isotope composition(δ^(13)C)were measured to assess instantaneous water use efficiency(WUE_(inst))and long-term water use efficiency(WUE_(i)).Multiple regression models and structural equation modelling(SEM)identified the effects of soil properties and physiological performances on WUE_(inst)and WUE_(i).The results show that WUE_(inst)values among the four treatments were insignificant.However,compared with the NT stand(35.8μmol·mol^(-1)),WUE_(i)values significantly increased to 41.7μmol·mol^(-1)in the UR,50.1μmol·mol^(-1)in the LT and 46.6μmol·mol^(-1)in HT treatments,largely explained by photosynthetic capacity and soil water content.Understory removal did not change physiological performance(needle water potential and photosynthetic capacity).Thinning increased the net photosynthetic rate(A_n)but not stomatal conductance(g_s)or predawn needle water potential(ψ_(pd)),implying that the improvement in water use efficiency for thinned stands was largely driven by radiation interception than by soil water availability.In general,thinning may be an appropriate management measure to promote P.massoniana WUE to cope with seasonal droughts under future extreme climates. 展开更多
关键词 Stable carbon isotope water use efficiency THINNING Understory removal Photosynthetic capacity Needle water potential
下载PDF
The relationship between the high-frequency performance of supercapacitors and the type of doped nitrogen in the carbon electrode
7
作者 FAN Ya-feng YI Zong-lin +6 位作者 ZHOU Yi XIE Li-jing SUN Guo-hua WANG Zhen-bing Huang Xian-hong SU Fang-yuan CHEN Cheng-meng 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期1015-1026,共12页
Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response me... Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response mechanisms of different nitrogen dopants at high frequencies are still unclear.In this study,melamine foam carbons with different configurations of surfacedoped N were formed by gradient carbonization,and the effects of the configurations on the high-frequency response behavior of the supercapacitors were analyzed.Using a combination of experiments and first-principle calculations,we found that pyrrolic N,characterized by a higher adsorption energy,increases the charge storage capacity of the electrode at high frequencies.On the other hand,graphitic N,with a lower adsorption energy,increases the speed of ion response.We propose the use of adsorption energy as a practical descriptor for electrode/electrolyte design in high-frequency applications,offering a more universal approach for improving the performance of N-doped carbon materials in supercapacitors. 展开更多
关键词 High-frequency supercapacitors carbon electrodes Doped nitrogen species Adsorption energy DESCRIPTOR
原文传递
Enhanced stability of nitrogen-doped carbon-supported palladium catalyst for oxidative carbonylation of phenol
8
作者 Xiaojing Liu Ruohan Zhao +4 位作者 Hao Zhao Zhimiao Wang Fang Li Wei Xue Yanji Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期19-28,共10页
Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticle... Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticles(NPs)on nitrogen-doped carbon;synthesized by using F127 as a stabilizer,as well as chitosan as a carbon and nitrogen source.The Pd/NCF catalyst was efficient and recyclable for oxidative carbonylation of phenol to diphenyl carbonate,exhibiting higher stability than Pd/NC prepared without F127 addition.The hydrogen bond between chitosan(CTS)and F127 was enhanced by F127,which anchored the N in the free amino group,increasing the N content of the carbon material and ensuring that the support could provide sufficient N sites for the deposition of Pd NPs.This process helped to improve metal dispersion.The increased metal-support interaction,which limits the leaching and coarsening of Pd NPs,improves the stability of the Pd/NCF catalyst.Furthermore,density functional theory calculations indicated that pyridine N stabilized the Pd^(2+)species,significantly inhibiting the loss of Pd^(2+)in Pd/NCF during the reaction process.This work provides a promising avenue towards enhancing the stability of nitrogen-doped carbon-supported metal catalysts. 展开更多
关键词 Supported Pd catalyst N-doped carbon Amphiphilic triblock copolymer Pyridinic nitrogen STABILITY
下载PDF
Correlation and Pathway Analysis of the Carbon,Nitrogen,and Phosphorus in Soil-Microorganism-Plant with Main Quality Components of Tea(Camellia sinensis)
9
作者 Chun Mao Ji He +3 位作者 Xuefeng Wen Yangzhou Xiang Jihong Feng Yingge Shu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期487-502,共16页
The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.Howev... The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.However,few studies have quantified the effects of these factors on the main quality components of tea.The study aimed to explore the interactions of C,N,and P in soil-microorganisms-plants and the effects of these factors on the main quality components of tea by using the path analysis method.The results indicated that(1)The contents of C,N,and P in soil,microorganisms,and tea plants were highly correlated and collinear,and showed significant correlations with the main quality components of tea.(2)Optimal regression equations were established to esti-mate tea polyphenol,amino acid,catechin,caffeine,and water extract content based on C,N,and P contents in soil,microorganisms,and tea plants(R^(2)=0.923,0.726,0.954,0.848,and 0.883,respectively).(3)Pathway analysis showed that microbial biomass phosphorus(MBP),root phosphorus,branch nitrogen,and microbial biomass carbon(MBC)were the largest direct impact factors on tea polyphenol,catechin,water extracts,amino acid,and caffeine content,respectively.Leaf carbon,root phosphorus,and leaf nitrogen were the largest indirect impact factors on tea polyphenol,catechin,and water extract content,respectively.Leaf carbon indirectly affected tea polyphenol content mainly by altering MBP content.Root phosphorus indirectly affected catechin content mainly by altering soil organic carbon content.Leaf nitrogen indirectly affected water extract content mainly by altering branch nitrogen content.The research results provide the scientific basis for reasonable fertilization in tea gardens and tea quality improvement. 展开更多
关键词 Soil-microorganisms-plant system carbon nitrogen PHOSPHORUS tea quality path analysis
下载PDF
Effects of water and nitrogen rate on grain-filling characteristics under high-low seedbed cultivation in winter wheat
10
作者 Junming Liu Zhuanyun Si +6 位作者 Shuang Li Lifeng Wu Yingying Zhang Xiaolei Wu Hui Cao Yang Gao Aiwang Duan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第12期4018-4031,共14页
A high-efficiency mode of high-low seedbed cultivation(HLSC)has been listed as the main agricultural technology to increase land utilization ratio and grain yield in Shandong Province,China.However,limited information... A high-efficiency mode of high-low seedbed cultivation(HLSC)has been listed as the main agricultural technology to increase land utilization ratio and grain yield in Shandong Province,China.However,limited information is available on the optimized water and nitrogen management for yield formation,especially the grain-filling process,under HLSC mode.A three-year field experiment with four nitrogen rates and three irrigation rates of HLSC was conducted to reveal the response of grain-filling parameters,grain weight percentage of spike weight(GPS),spike moisture content(SMC),and winter wheat yield to water and nitrogen rates.The four nitrogen rates were N1(360 kg ha^(-1) pure N),N2(300 kg ha^(-1) pure N),N3(240 kg ha^(-1) pure N),and N4(180 kg ha^(-1) pure N),respectively,and the three irrigation quotas were W1(120 mm),W2(90 mm),and W3(60 mm),respectively.Results showed that the determinate growth function generally performed well in simulating the temporal dynamics of grain weight(0.989<R^(2)<0.999,where R2 is the determination coefficient).The occurrence time of maximum filling rate(T_(max))and active grain-filling period(AGP)increased with the increase in the water or nitrogen rate,whereas the average grain-filling rate(G_(mean))had a decreasing trend.The final 1,000-grain weight(FTGW)increased and then decreased with the increase in the nitrogen rates and increased with the increase in the irrigation rates.The GPS and SMC had a highly significant quadratic polynomial relationship with grain weight and days after anthesis.Nitrogen,irrigation,and year significantly affected the T_(max),AGP,G_(mean),and FTGW.Particularly,the AGP and FTGW were insignificantly different between high seedbed(HLSC-H)and low seedbed(HLSC-L)across the water and nitrogen levels.Moreover,the moderate water and nitrogen supply was more beneficial for grain yield,as well as for spike number and grain number per hectare.The principal component analysis indicated that combining 240-300 kg N ha^(-1) and 90^(-1)20 mm irrigation quota could improve grain-filling efficiency and yield for the HLSC-cultivated winter wheat. 展开更多
关键词 high-low seedbed cultivation water and nitrogen grain filling determinate growth equation wheat yield
下载PDF
Elucidating the role of embedding dispersed cobalt sites in nitrogen-doped carbon frameworks in Si-based anodes for stable and superior storage
11
作者 Yueying Chen Ping Li +8 位作者 Mianying Huang Chunlei Wu Qianhong Huang Tingyang Xie Xiaoming Lin Akif Zeb Yongbo Wu Zhiguang Xu Yuepeng Cai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期180-195,共16页
Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon s... Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon silicon matrix composite with atomically dispersed Co sites(Si/Co-N-C) is obtained via the design of the frame structure loaded with nano-components and the multi-element hybrid strategy. Co atoms are uniformly fixed to the N-C frame and tightly packed with nanoscale silicon particles as an activation and protection building block. The mechanism of the N-C framework of loaded metal Co in the Si alloying process is revealed by electrochemical kinetic analysis and ex situ characterization tests.Impressively, the nitrogen-doped Co site activates the intercalation of the outer carbon matrix to supplement the additional capacity. The Co nanoparticles with high conductivity and support enhance the conductivity and structural stability of the composite, accelerating the Li^(+)/Na^(+) diffusion kinetics. Density functional theory(DFT) calculation confirms that the hetero-structure Si/Co-N-C adjusts the electronic structure to obtain good lithium-ion adsorption energy, reduces the Li^(+)/Na^(+) migration energy barrier.This work provides meaningful guidance for the development of high-performance metal/non-metal modified anode materials. 展开更多
关键词 Co nanoparticles nitrogen doped carbon Silicon Lithium/sodium storage Metal-organic frameworks(MOFs)
下载PDF
Electronic Communication Between Co and Ru Sites Decorated on Nitrogen-Doped Carbon Nanotubes Boosting the Alkaline Hydrogen Evolution Reaction
12
作者 Meng-Ting Gao Ying Wei +8 位作者 Xue-Meng Hu Wenj-Jie Zhu Qing-Qing Liu Jin-Yuan Qiang Wan-Wan Liu Ying Wang Xu Li Jian-Feng Huang Yong-Qiang Feng 《电化学(中英文)》 CAS 北大核心 2024年第9期1-9,共9页
Designing highly efficient Pt-free electrocatalysts with low overpotential for an alkaline hydrogen evolution reaction(HER)remains a significant challenge.Here,a novel and efficient cobalt(Co),ruthenium(Ru)bimetallic ... Designing highly efficient Pt-free electrocatalysts with low overpotential for an alkaline hydrogen evolution reaction(HER)remains a significant challenge.Here,a novel and efficient cobalt(Co),ruthenium(Ru)bimetallic electrocatalyst composed of CoRu nanoalloy decorated on the N-doped carbon nanotubes(CoRu@N-CNTs),was prepared by reacting fullerenol with melamine via hydrothermal treatment and followed by pyrolysis.Benefiting from the electronic communication between Co and Ru sites,the as-obtained CoRu@N-CNTs catalyst exhibited superior electrocatalytic HER activity.To deliver a current density of 10 mA·cm^(-2),it required an overpotential of merely 19 mV along with a Tafel slope of 26.19 mV·dec^(-1)in 1 mol·L^(-1)potassium hydroxide(KOH)solution,outperforming the benchmark Pt/C catalyst.The present work would pave a new way towards the design and construction of an efficient electrocatalyst for energy storage and conversion. 展开更多
关键词 CoRu alloy ELECTROCATALYST water splitting Hydrogen evolution reaction carbon nanotubes
下载PDF
Sedimentary build-ups of pre-salt isolated carbonate platforms and formation of deep-water giant oil fields in Santos Basin,Brazil
13
作者 DOU Lirong WEN Zhixin +7 位作者 WANG Zhaoming HE Zhengjun SONG Chengpeng CHEN Ruiyin YANG Xiaofa LIU Xiaobing LIU Zuodong CHEN Yanyan 《Petroleum Exploration and Development》 SCIE 2024年第4期949-962,共14页
In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin,based on comprehensive utiliz... In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin,based on comprehensive utilization of geological,seismic,and core data,and reconstruction of Early Cretaceous prototype basin and lithofacies paleogeography,it is proposed for the first time that the construction of pre-salt carbonate build-ups was controlled by two types of isolated platforms:inter-depression fault-uplift and intra-depression fault-high.The inter-depression fault-uplift isolated platforms are distributed on the present-day pre-salt uplifted zones between depressions,and are built on half-and fault-horst blocks that were inherited and developed in the early intra-continental and inter-continental rift stages.The late intra-continental rift coquinas of the ITP Formation and the early inter-continental rift microbial limestones of the BVE Formation are continuously constructed;intra-depression fault-high isolated platforms are distributed in the current pre-salt depression zones,built on the uplifted zones formed by volcanic rock build-ups in the early prototype stage of intra-continental rifts,and only the BVE microbial limestones are developed.Both types of limestones formed into mound-shoal bodies,that have the characteristics of large reservoir thickness and good physical properties.Based on the dissection of large pre-salt oil fields discovered in the Santos Basin,it has been found that both types of platforms could form large-scale combined structural-stratigraphic traps,surrounded by high-quality lacustrine and lagoon source rocks at the periphery,and efficiently sealed by thick high-quality evaporite rocks above,forming the optimal combination of source,reservoir and cap in the form of“lower generation,middle storage,and upper cap”,with a high degree of oil and gas enrichment.It has been found that the large oil fields are all bottom water massive oil fields with a unified pressure system,and they are all filled to the spill-point.The future exploration is recommended to focus on the inter-depression fault-uplift isolated platforms in the western uplift zone and the southern section of eastern uplift zones,as well as intra-depression fault-high isolated platforms in the central depression zone.The result not only provides an important basis for the advanced selection of potential play fairways,bidding of new blocks,and deployment of awarded exploration blocks in the Santos Basin,but also provides a reference for the global selection of deep-water exploration blocks in passive continental margin basins. 展开更多
关键词 Santos Basin passive continental marginal basin deep water inter-depression fault-uplift isolated carbonate platform intra-depression fault-high carbonate isolated platform giant oil fields
下载PDF
Effects of long-term grazing exclusion on vegetation structure,soil water holding capacity,carbon and nitrogen sequestration capacity in an alpine meadow on the Tibetan Plateau 被引量:2
14
作者 YANG Yong-sheng ZHANG Fa-wei +5 位作者 XIE Xian-rong WANG Jun-bang LI Ying-nian HUANG Xiao-tao LI Hui-ting ZHOU Hua-kun 《Journal of Mountain Science》 SCIE CSCD 2023年第3期779-791,共13页
Grazing exclusion is one of the primary management practices used to restore degraded grasslands on the Tibetan Plateau.However,to date,the effects of long-term grazing exclusion measures on the process of restoring d... Grazing exclusion is one of the primary management practices used to restore degraded grasslands on the Tibetan Plateau.However,to date,the effects of long-term grazing exclusion measures on the process of restoring degraded alpine meadows have not been evaluated.In this study,moderately degraded plots,in which the vegetation coverage was approximately 65%and the dominant plant species was Potentilla anserina L,with grazing exclusion for 2 to 23 years,were selected in alpine meadows of Haibei in Qinghai-Tibet Plateau.Plant coverage,plant height,biomass,soil bulk density,saturated water content,soil organic carbon(SOC)and total nitrogen(TN)were evaluated.The results were as follows:(1)With aboveground biomass and total saturated water content at 0-40 cm depth,the average SOC and TN contents in moderately degraded alpine meadows increased as a power function,and the plant height increased as a log function.(2)The average soil bulk density at 0-40 cm depth first decreased and then increased with increasing grazing exclusion duration,and the minimum value of 0.90 g·cm^(-3) was reached at 15.23 years.The plant coverage,total belowground biomass at 0-40 cm depth,total aboveground and belowground biomass first increased and then decreased,their maximum values(80.49%,2452.92g·m^(-2),2891.06 g·m^(-2))were reached at 9.41,9.46 and 10.25 years,respectively.Long-term grazing exclusion is apparently harmful for the sustainable restoration of degraded alpine meadows.The optimal duration of grazing exclusion for the restoration of moderately degraded alpine meadows was 10 years.This research suggests that moderate disturbance should be allowed in moderately degraded alpine meadows after 10years of grazing exclusion. 展开更多
关键词 Long-term grazing exclusion Soil water holdingcapacity Soilcarbonand nitrogen sequestration BIOMASS Alpine meadow
原文传递
Effects of tree size and organ age on variations in carbon,nitrogen,and phosphorus stoichiometry in Pinus koraiensis
15
作者 Yanjun Wang Guangze Jin Zhili Liu 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期155-165,共11页
Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutr... Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutrients vary with tree size,organ age,or root order at the individual level remains limited.We determined C,N,and P contents and their stoichiometric ratios(i.e.,nutrient traits)in needles,branches,and fine roots at different organ ages(0-3-year-old needles and branches)and root orders(1st-4th order roots)from 64 Pinus koraiensis of varying size(Diameter at breast height ranged from 0.3 to 100 cm)in northeast China.Soil factors were also measured.The results show that nutrient traits were regulated by tree size,organ age,or root order rather than soil factors.At a whole-plant level,nutrient traits decreased in needles and fine roots but increased in branches with tree size.At the organ level,age or root order had a negative effect on C,N,and P and a positive effect on stoichiometric ratios.Our results demonstrate that nutrient variations are closely related to organ-specific functions and ecophysiological processes at an individual level.It is suggested that the nutrient acquisition strategy by younger trees and organ fractions with higher nutrient content is for survival.Conversely,nutrient storage strategy in older trees and organ fractions are mainly for steady growth.Our results clarified the nutrient utilization strategies during tree and organ ontogeny and suggest that tree size and organ age or root order should be simultaneously considered to understand the complexities of nutrient variations. 展开更多
关键词 Tree size Organ age(or root order) carbon(C) nitrogen(N) Phosphorus(P) Pinus koraiensis
下载PDF
Seasonal constraint of dynamic water temperature on riverine dissolved inorganic nitrogen transport in land surface modeling
16
作者 Shuang Liu Kaiheng Hu +1 位作者 Zhenghui Xie Yan Wang 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第4期35-40,共6页
水体温度变化对河流可溶性无机氮(DIN)输送有着强烈控制作用.然而,在全球尺度上河流DIN输送量对水温度变化的响应尚不清楚.因此,本文基于陆面过程模式,耦合河流水温估算和DIN传输方案,设定有,无动态水温情景,对比研究陆面模拟中水温变... 水体温度变化对河流可溶性无机氮(DIN)输送有着强烈控制作用.然而,在全球尺度上河流DIN输送量对水温度变化的响应尚不清楚.因此,本文基于陆面过程模式,耦合河流水温估算和DIN传输方案,设定有,无动态水温情景,对比研究陆面模拟中水温变化对河流DIN通量变化的影响.结果表明:在考虑水温动态变化后,在30°N和30°S之间, DIN通量年振幅减小5%–25%.在中国东部地区,水温动态变化使河流DIN通量在夏季减少1%–3%,在冬季增加1%–5%,对DIN通量具有明显的季节性约束作用,表明动态水温的表达在河流DIN输送模拟中的重要性. 展开更多
关键词 陆面模拟 河流氮输送 水温变化 季节变化 全球尺度
下载PDF
Recentadvancesincarbon‐basedmaterials for solar‐driven interfacial photothermal conversion water evaporation:Assemblies,structures,applications,and prospective 被引量:9
17
作者 Yanmin Li Yanying Shi +4 位作者 Haiwen Wang Tiefeng Liu Xiuwen Zheng Shanmin Gao Jun Lu 《Carbon Energy》 SCIE EI CAS CSCD 2023年第11期101-142,共42页
The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,la... The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,lake water,or river water has been recognized as an environmentally friendly process for obtaining clean water in a low‐cost way.However,water transport is restricted by itself by solar energy absorption capacity's limits,especially for finite evaporation rates and insufficient working life.Therefore,it is important to seek photothermal conversion materials that can efficiently absorb solar energy and reasonably design solar‐driven interfacial photothermal conversion water evaporation devices.This paper reviews the research progress of carbon‐based photothermal conversion materials and the mechanism for solar‐driven interfacial photothermal conversion water evaporation,as well as the summary of the design and development of the devices.Based on the research progress and achievements of photothermal conversion materials and devices in the fields of seawater desalination and photothermal electric energy generation in recent years,the challenges and opportunities faced by carbon‐based photothermal conversion materials and devices are discussed.The prospect of the practical application of solar‐driven interfacial photothermal conversion evaporation technology is foreseen,and theoretical guidance is provided for the further development of this technology. 展开更多
关键词 APPLICATIONS carbon‐based materials EVAPORATOR photothermal conversion water evaporation
下载PDF
Optimizing band structure of CoP nanoparticles via rich-defect carbon shell toward bifunctional electrocatalysts for overall water splitting 被引量:7
18
作者 Juncheng Wu Zhe‐Fan Wang +7 位作者 Taotao Guan Guoli Zhang Juan Zhang Jie Han Shengqin Guan Ning Wang Jianlong Wang Kaixi Li 《Carbon Energy》 SCIE CSCD 2023年第3期112-125,共14页
Transition-metal phosphides(TMPs)with high catalytic activity are widely used in the design of electrodes for water splitting.However,a major challenge is how to achieve the trade-off between activity and stability of... Transition-metal phosphides(TMPs)with high catalytic activity are widely used in the design of electrodes for water splitting.However,a major challenge is how to achieve the trade-off between activity and stability of TMPs.Herein,a novel method for synthesizing CoP nanoparticles encapsu-lated in a rich-defect carbon shell(CoP/DCS)is developed through the self-assembly of modified polycyclic aromatic molecules.The graft and removal of high-activity C-N bonds of aromatic molecules render the controllable design of crystallite defects of carbon shell.The density functional theory calculation indicates that the carbon defects with unpaired electrons could effectively tailor the band structure of CoP.Benefiting from the improved activity and corrosion resistance,the CoP/DCS delivers outstanding difunctional hydrogen evolution reaction(88 mV)and oxygen evolution reaction(251 mV)performances at 10 mA cm^(−2)current density.Furthermore,the coupled water electrolyzer with CoP/DCS as both the cathode and anode presents ultralow cell voltages of 1.49 V to achieve 10 mA cm^(−2)with long-time stability.This strategy to improve TMPs electrocatalyst with rich-DCS and heterogeneous structure will inspire the design of other transition metal compound electrocatalysts for water splitting. 展开更多
关键词 band structure bifunctional electrocatalysts CoP nanoparticles overall water splitting rich‐defect carbon
下载PDF
Carbon sequestration rate,nitrogen use efficiency and rice yield responses to long-term substitution of chemical fertilizer by organic manure in a rice–rice cropping system 被引量:2
19
作者 Nafiu Garba HAYATU LIU Yi-ren +7 位作者 HAN Tian-fu Nano Alemu DABA ZHANG Lu SHEN Zhe LI Ji-wen Haliru MUAZU Sobhi Faid LAMLOM ZHANG Hui-min 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第9期2848-2864,共17页
Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield,soil carbon storage,and nutrient use efficiency.However,how the long-term substitution of chemical... Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield,soil carbon storage,and nutrient use efficiency.However,how the long-term substitution of chemical fertilizer with organic manure affects rice yield,carbon sequestration rate(CSR),and nitrogen use efficiency(NUE)while ensuring environmental safety remains unclear.This study assessed the long-term effect of substituting chemical fertilizer with organic manure on rice yield,CSR,and NUE.It also determined the optimum substitution ratio in the acidic soil of southern China.The treatments were:(i)NPK0,unfertilized control;(ii)NPK1,100%chemical nitrogen,phosphorus,and potassium fertilizer;(iii)NPKM1,70%chemical NPK fertilizer and 30%organic manure;(iv)NPKM2,50%chemical NPK fertilizer and 50%organic manure;and(v)NPKM3,30%chemical NPK fertilizer and 70%organic manure.Milk vetch and pig manure were sources of manure for early and late rice seasons,respectively.The result showed that SOC content was higher in NPKM1,NPKM2,and NPKM3 treatments than in NPK0 and NPK1 treatments.The carbon sequestration rate increased by 140,160,and 280%under NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK1 treatment.Grain yield was 86.1,93.1,93.6,and 96.5%higher under NPK1,NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK0 treatment.The NUE in NPKM1,NPKM2,and NPKM3 treatments was higher as compared to NPK1 treatment for both rice seasons.Redundancy analysis revealed close positive relationships of CSR with C input,total N,soil C:N ratio,catalase,and humic acids,whereas NUE was closely related to grain yield,grain N content,and phenol oxidase.Furthermore,CSR and NUE negatively correlated with humin acid and soil C:P and N:P ratios.The technique for order of preference by similarity to ideal solution(TOPSIS)showed that NPKM3 treatment was the optimum strategy for improving CSR and NUE.Therefore,substituting 70%of chemical fertilizer with organic manure could be the best management option for increasing CSR and NUE in the paddy fields of southern China. 展开更多
关键词 carbon sequestration chemical fertilizer long term organic manure nitrogen use efficiency paddy rice
下载PDF
Physiological mechanisms underlying reduced photosynthesis in wheat leaves grown in the field under conditions of nitrogen and water deficiency 被引量:1
20
作者 Juan Kang Yingying Chu +9 位作者 Geng Ma Yanfei Zhang Xiaoyan Zhang Mao Wang Hongfang Lu Lifang Wang Guozhang Kang Dongyun Ma Yingxin Xie Chenyang Wang 《The Crop Journal》 SCIE CSCD 2023年第2期638-650,共13页
Reduced photosynthesis results directly from nitrogen or water deficiency in wheat plants,and leads to a decrease in grain yield.In this study,by measuring the effects of water and N deficiencies,both individually and... Reduced photosynthesis results directly from nitrogen or water deficiency in wheat plants,and leads to a decrease in grain yield.In this study,by measuring the effects of water and N deficiencies,both individually and combined,we characterized the responses of wheat(Triticum aestivum L.Yumai 49-198)plants to these two deficiencies using physiological measurements and comparative proteomics.Significant decreases in grain yield and leaf photosynthetic performance were observed in all deficiency conditions,and 106 photosynthetic proteins that showed responses were identified.Nitrogen deficiency induced the least change in photosynthetic proteins,and similar changes in most of these proteins were also observed for the combined nitrogen and water deficiencies.Water deficiency induced the largest change in photosynthetic proteins and resulted in the lowest 1000-kernel weight.Severe decreases in photosynthesis in both the water-deficiency and combined N and water deficiency groups were reflected mainly in an imbalanced ATP/NADPH ratio associated with the light reaction,which influences carbon metabolism in the Calvin cycle.Photorespiration was respectively stimulated or inhibited by N or water deficiency,while suppression of photorespiratory flux and activation of nitrogen recycling were observed in the combined N and water deficiency treatments.Comparison of photosynthetic proteins between experimental sites suggested that precipitation affected linear electron flow in the photoreaction,and thus photosynthetic efficiency.Our results provide a baseline for future studies of the roles of these photosynthetic proteins in the response to N or water deficiency and their effect on 1000-kernel weight. 展开更多
关键词 WHEAT PHOTOSYNTHESIS nitrogen water PROTEOMICS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部