A Cu-Co-K/activated carbon (AC) adsorbent has been developed for the removal of carbonyl sulfide (COS). The effects of COS concentration, reaction temperature and relative humidity were closely examined. A breakth...A Cu-Co-K/activated carbon (AC) adsorbent has been developed for the removal of carbonyl sulfide (COS). The effects of COS concentration, reaction temperature and relative humidity were closely examined. A breakthrough of 33.23 mg COS .gl adsorbent at 60℃, under 30% relative humidity and in presence of 1.0% oxygen was exhibited in the Cu-Co-K/AC adsorbent prepared. Competitive adsorption studies for COS in the presence of CS2, and H2S were also conducted. TPD analysis was used to identify sulfur-containing products on the carbon surface, and the results indicated that H2S, COS and SO2 were all evident in the effluent gas generated from the exhausted Cu-Co-K/AC. Structure of the activated carbon samples has been characterized using nitrogen adsorption, and their surface chemical structures were also determined with X-ray photoelectron spectroscopy (XPS). It turns out that the modification with Cu(OH)2CO3- CoPcS-KOH can significantly improve the COS removal capacity, forming SO2/4 species simultaneously. Regenera- tion of the spent activated carbon sorbents by thermal desorption has also been explored.展开更多
The waste gas evolved from biodegradation of animal urine contains ammonia causing environmental concerns. A new and effective method for removing ammonia from such waste gas using reactive adsorption is presented. In...The waste gas evolved from biodegradation of animal urine contains ammonia causing environmental concerns. A new and effective method for removing ammonia from such waste gas using reactive adsorption is presented. In the process, activated carbon impregnated with H2SO4(H2SO4/C) is employed. Ammonia in the waste gas reacts with H2SO4 on the adsorbent instantaneously and completely to form (NIL)2SO4. The H2SO4/C adsorbent is high in NH3 adsorption capacity and regenerable. The NH3 removal capacity of this regenerable adsorbent is more than 30 times that of the adsorbents used normally in the industry. The spent H2SO4/C is regenerated by flowing low-pressure steam through the adsorbent bed to remove the (NH4)2SO4 from the adsorbent. The regeneration by-product is concentrated (NH4)2SO4 solution, which is a perfect liquid fertilizer for local use. Re-soaking the activated carbon with H2SO4 solution rejuvenates the activity of the adsorbent. Thus the H2SOJC can be reused repeatedly. In the mechanism of this reactive adsorption process, trace of H20 in the waste gas is a required, which lends itself to treating ammonia gas saturated with moisture from biodegradation of animal urine.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. Ul137603, 51268021 and 51368026), the National High Technology Research and Development Program of China (No. 2012AA062504) and the Applied Basic Research Program of Yunnan (Nos. 2011FB027 and 2011FA010).
文摘A Cu-Co-K/activated carbon (AC) adsorbent has been developed for the removal of carbonyl sulfide (COS). The effects of COS concentration, reaction temperature and relative humidity were closely examined. A breakthrough of 33.23 mg COS .gl adsorbent at 60℃, under 30% relative humidity and in presence of 1.0% oxygen was exhibited in the Cu-Co-K/AC adsorbent prepared. Competitive adsorption studies for COS in the presence of CS2, and H2S were also conducted. TPD analysis was used to identify sulfur-containing products on the carbon surface, and the results indicated that H2S, COS and SO2 were all evident in the effluent gas generated from the exhausted Cu-Co-K/AC. Structure of the activated carbon samples has been characterized using nitrogen adsorption, and their surface chemical structures were also determined with X-ray photoelectron spectroscopy (XPS). It turns out that the modification with Cu(OH)2CO3- CoPcS-KOH can significantly improve the COS removal capacity, forming SO2/4 species simultaneously. Regenera- tion of the spent activated carbon sorbents by thermal desorption has also been explored.
文摘The waste gas evolved from biodegradation of animal urine contains ammonia causing environmental concerns. A new and effective method for removing ammonia from such waste gas using reactive adsorption is presented. In the process, activated carbon impregnated with H2SO4(H2SO4/C) is employed. Ammonia in the waste gas reacts with H2SO4 on the adsorbent instantaneously and completely to form (NIL)2SO4. The H2SO4/C adsorbent is high in NH3 adsorption capacity and regenerable. The NH3 removal capacity of this regenerable adsorbent is more than 30 times that of the adsorbents used normally in the industry. The spent H2SO4/C is regenerated by flowing low-pressure steam through the adsorbent bed to remove the (NH4)2SO4 from the adsorbent. The regeneration by-product is concentrated (NH4)2SO4 solution, which is a perfect liquid fertilizer for local use. Re-soaking the activated carbon with H2SO4 solution rejuvenates the activity of the adsorbent. Thus the H2SOJC can be reused repeatedly. In the mechanism of this reactive adsorption process, trace of H20 in the waste gas is a required, which lends itself to treating ammonia gas saturated with moisture from biodegradation of animal urine.